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Abstract
This tutorial gives an overview of the most widespread techniques of both ultrashort pulse
shaping and pulse characterization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1966, a few years after the first laser came to light, short
picosecond pulses became available [1]. Their generation
and characterization were already active fields of research.
Forty-four years later, few-cycle femtosecond pulses and
complex shaped pulses can be synthesized in various spectral
regions. These arbitrarily shaped optical waveforms are of
great interest in a number of fields including coherent control
[2–4], multidimensional spectroscopy [5], biological imaging
[6], compression of optical pulses [7], factorization of numbers
[8, 9] and optical communications [10]. Most of these works
were spurred by technological breakthroughs in the field of
arbitrary pulse shaping [11]. This spectacular progress has
been obtained in parallel with the development of new tools
for a complete characterization of ultrashort pulses [12, 13].
We propose to describe for newcomers to the field the basics of
arbitrary pulse shaping and pulse characterization. The tone of
this tutorial is to be as didactic as possible and is intentionally
not a complete review. To help beginners, several tables and
numerical applications enlighten the text. The authors strongly
recommend that interested readers should read more extensive
articles such as Weiner’s review [11] of pulse shaping or the
recent review on characterization by Walmsley and Dorrer
[13]. Finally, the present work is complemented by a range of
interesting books [14–16].

This tutorial is organized as follows: section 2 gives
some mathematical background for the description and

representation of ultrashort pulses, section 3 is devoted to
arbitrary pulse shaping, section 4 presents some of the
most widespread methods for ultrashort pulse characterization
and section 5 gives an overview of shaping-assisted
characterization.

2. Definition of the electric field and its
representation

2.1. Definition of the electric field

A laser pulse is entirely defined by its electric field E(t). For
ultrashort pulses however, E(t) is not easily accessed and the
spectral domain is often more practical. As E(t) is a real
function, its Fourier transform reads Ẽ(ω) = 1/2(Ẽ(ω) +
Ẽ∗(−ω)) where Ẽ(ω) is the complex electric field taking non-
zero values only for positive values of the frequency ω.

Ẽ(ω) is a complex function containing all the information
concerning the pulse and from which E(t) can be retrieved.
From the inverse Fourier transform of Ẽ(ω) one gets a
complex field in the temporal domain E(t), whose real part is
Re[E(t)] = E(t):

E(t) =
∫ +∞

−∞
Ẽ(ω) exp(−iωt)

dω

2π
. (1)

The shape of an ultrashort pulse can thus be defined
equivalently by its electric field E(t), or by its complex electric

0953-4075/10/103001+34$30.00 1 © 2010 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/43/10/103001
mailto:beatrice.chatel@irsamc.ups-tlse.fr
http://stacks.iop.org/JPhysB/43/103001


J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 103001 PhD Tutorial

angular frequency

time

Δt

δt

Δω δω

Figure 1. The complexity can be seen as the ratio between the
largest and smallest features in either time or spectral domains. �t
and δt (resp. �ω and δω) are the largest and smallest features in the
time (resp. in spectral) domain.

field in the time domain E(t) or in the spectral domain Ẽ(ω).
Ẽ(ω) = A(ω)eiϕ(ω) is usually the most practical definition
and both its spectral amplitude A(ω) and its spectral phase
ϕ(ω) contribute to the pulse shape. As an example, for a
given spectral amplitude, the spectral phase alone completely
determines the pulse duration and shape. The shortest duration
is achieved for a flat phase and the pulse is said to be Fourier
limited. When a pulse is Fourier limited, its duration is
inversely proportional to its spectral width. When it is no
longer Fourier limited, its duration increases. The time–
bandwidth product (TBP) provides a way to estimate how
far a pulse is from the Fourier limit. The TBP is the product
of time duration and spectral width of a given pulse:

TBP = �t · �ω (2)

where �t and �ω are the full width at half maximum (FWHM)
in intensity of the pulse temporal and spectral profiles4.
Another way to estimate the distance from Fourier limited
is the complexity [11]. It can be interpreted as the ratio
between the largest and the smallest features in either the time
or spectral domains:

η = �t/δt = �ω/δω (3)

as sketched in figure 1. The TBP and complexity are
proportional and for a Gaussian spectrum one obtains

η � TBP /4 ln 2. (4)

The spectral phase plays a central role in determining the
complexity, and more generally the shape, of a short pulse.
There are several quantities related to the spectral phase that
are often used to describe the evolution of a shaped pulse. The
group delay is defined as Tg(ω) = ∂ϕ/∂ω and it describes
the arrival time of each spectral component of the pulse. The
instantaneous frequency, defined as ω(t) = ∂ϕt/∂t (where
ϕt is the temporal phase), gives the opposite point of view
as it describes the temporal evolution of the frequency of the
short pulse. Both can be extremely useful to grasp the main
characteristics of a given shaped pulse.

Expanding the spectral phase as a Taylor series is another
useful tool to analyse the effect of each term of the series:

4 We arbitrarily choose to work with the FWHM.

ϕ(ω) = ϕ
(0)
0 + ϕ

(1)
0 (ω − ω0) +

1

2
ϕ

(2)
0 (ω − ω0)

2

+
1

6
ϕ

(3)
0 (ω − ω0)

3 +
1

24
ϕ

(4)
0 (ω − ω0)

4

+ · · · +
1

n!
ϕ

(n)
0 (ω − ω0)

n (5)

with ϕ
(0)
0 = ϕ(ω0) and ϕ

(n)
0 = (dnϕ/dωn)ω0 .

• ϕ
(0)
0 is known as the absolute phase, or the carrier envelope

phase (CEP), which corresponds to the phase between the
envelope of the electric field and the carrier. This phase
plays a key role in nonlinear interactions such as high
harmonic generation when pulses are short enough that
only a few cycles lie within the envelope (cf figure 2).

However, in this tutorial, we consider many-cycle
pulses and we do not focus on the CEP. Interested readers
can refer to [17] for CEP measurement and control.

• ϕ
(1)
0 simply corresponds to a delay between the pulse and

an arbitrary origin of time. This leads to a constant group
delay.

• ϕ
(2)
0 is the most famous term, well known as chirp. It

induces an increase of the pulse duration. Around any
given frequency under the pulse spectrum, the quadratic
phase can be approximated by its tangent, whose slope
is simply the group delay which evolves linearly with the
frequency. In other words, each frequency experiences
a delay that linearly increases as we scan through the
spectrum, as shown in figure 3(b). For a strong chirp
(ϕ(2)

0 � �t2
T F , where �tT F is the Fourier-limited pulse

duration), the instantaneous frequency is given by ω(t) =
ω0 + t

/
ϕ

(2)
0 . Many experiments have been performed to

study the interaction of atoms or molecules with a chirped
pulse leading to fascinating results [18–21].

• ϕ
(3)
0 corresponds to the cubic phase. It leads in the

temporal domain to many pre- or post-pulses (figure 3(c))
and can be exploited in coherent control schemes [22].
When aiming for really short pulses, cubic phase as well
as higher orders has to be properly compensated.

It is worth noting that some phases cannot be expanded as
a Taylor series, such as sinusoidal phases or phase jumps that
are routinely used in coherent control schemes.

2.2. How to represent a short pulse?

The most common way to represent a short pulse is to plot
both its spectral amplitude A(ω) and its spectral phase ϕ(ω)

as shown in the first column of figure 3 for a flat phase, a
ϕ

(2)
0 , a ϕ

(3)
0 , a π -jump and a two-pulse sequence. Another

possibility is to plot the temporal intensity5 |E(t)|2, as shown
in the second column of figure 3.

However, in some cases, time-domain or frequency-
domain representations are not enough, especially when both
time and frequency properties are strongly coupled. Time–
frequency distributions such as the Wigner function have

5 This time representation does not carry all the information on the pulse as
the oscillations under the envelope are not shown.
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(b)(a)

Figure 2. E(t) (in black) and envelope (in grey) of the electric field of a short laser pulse in two cases of carrier envelope phase. The pulse
has a central wavelength of 800 nm and a FWHM of 2 fs. In (a) a 0 rad CEP shows a cosine pulse and in (b) a π /2 rad CEP shows a sine
pulse.
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Figure 3. Pulse shaping gallery: (a) Fourier transform pulse, (b) chirped pulse, (c) cubic phase, (d) spectral π -jump, (e) two-pulse sequence.
The first column presents the spectral intensity and phase, the second one, the temporal intensity, the third one the Wigner function and the
last one the spectrogram. The gate chosen for it is a Fourier-limited 10 fs pulse at 800 nm.
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been proposed to provide an intuitive mapping of these time–
frequency couplings [23, 24]. The Wigner function of an
electric field E(t) can be written as [24]

W(t, ω) =
∫

E

(
t +

t ′

2

)
E∗

(
t − t ′

2

)
eiωt ′dt ′ (6)

or alternatively using its spectral electric field Ẽ(ω):

W(t, ω) = 1

2π

∫
Ẽ

(
ω +

ω′

2

)
Ẽ∗

(
ω − ω′

2

)
e−iω′tdω′. (7)

The equivalence of these two definitions can be shown
using Fourier transform properties. The third column of
figure 3 shows the Wigner functions for different pulse shapes.
As an example, for ϕ

(2)
0 (case (b)), one can clearly see the linear

sweep in time of the instantaneous frequency. Although it
contains all the information on the pulse and usually provides
an intuitive representation for complex pulse, the Wigner
function can sometimes be difficult to interpret. As an
example, for a two-pulse sequence (case (e)), there are fringes
and a maximum around t = 0 although there is no energy
at that time in the two-pulse sequence. For the case of two
pulses or cubic phase, the Wigner function can be negative.
The marginals, however, which represent the temporal and
spectral intensity of the pulse, are always positive [13]. A more
intuitive alternative to the Wigner function is the spectrogram
that can be written as

S(t, ω) =
∣∣∣∣
∫

E(t ′)g(t ′ − t) eiωt ′dt ′
∣∣∣∣
2

(8)

The spectrogram is the time convolution of the electric field
with a gate g(t) that can be the pulse itself. In the last column
of figure 3, the spectrogram of each case is plotted: the gate
chosen is a Fourier-limited pulse at 800 nm with a FWHM
duration of 10 fs. Some well-known complete characterization
techniques retrieve the spectrogram [25].

3. Arbitrary pulse shaping of ultrashort pulses

3.1. Generalities

The use of optimally shaped pulses to guide and control the
temporal evolution of a system has been an active field of
research for the last 20 years. Two main approaches have been
developed.

In the absence of predesigned control mechanisms a
closed loop scheme [26–34] may be employed to find efficient
pulse shapes: the outcomes of many different shapes are fed
back into an algorithm that iteratively optimizes the excitation
shape without insight into the physical mechanism that is
triggered by a particular shape.

In contrast, the effect of shapes on model systems can be
systematically studied within an open-loop scheme [35–40].
This open-loop approach is well adapted to small systems
for which theoretical predictions are reliable. It consists
of reaching a specific goal (manipulation of the temporal
response of a system excited by a light pulse) without any
experimental feedback. Physical analysis of the process allows
predetermination of the theoretical pulse shape that leads to

R(t)

H(ω)

Impulse response

 Frequency response

(b) Time domain

(a) Frequency domain

~Ein(ω)

Ein(t)

~
Eout(ω)

Eout(t)

Figure 4. Pulse shaping by linear filtering: (a) frequency domain
and (b) time domain.

the desired result. It is then implemented experimentally.
Some results by ‘test-error’ have also been obtained in complex
systems following this open-loop approach [41].

Recently researchers have tried to combine both
approaches to retrieve information from the complex pulses
designed by the closed-loop approach [42, 43]. In particular,
interesting results have been obtained in the strong field
domain [44–47].

This field has pushed new developments, in particular to
extend the pulse shaper’s capabilities

• in terms of the refresh rate, which is crucial in the closed-
loop approach,

• in terms of the time shaping window to extend the size of
the phase space,

• in terms of the spectral bandwidth to be able to control a
great variety of systems, and so on.

In this section we will present the basics and some key
results. We will insist on the most fundamental principles,
limitations and experimental advice to allow newcomers in
the field to develop and correctly use their own device.

Pulse shaping techniques presented here are based on the
linear, time-invariant filter. They can be described either in the
time domain or in the frequency domain.

In the time domain, the output of a linear filter (cf figure 4)
is simply given by the following convolution product:

Eout(t) = R(t) ⊗ Ein(t) (9)

where R(t) is the impulse response of the pulse shaper.
However, for femtosecond pulses, direct shaping in time is
quite a hard task and most of the devices operate in the spectral
domain and the output pulse can be written as

Ẽout(ω) = H(ω)Ẽin(ω) (10)

where the transfer function H(ω) completely describes the
pulse shaper.

In the past decade, a lot of effort was put into developing
versatile pulse shapers based on programmable masks. Many
programmable pulse shapers are now available but none is
universal: they are all complex systems with extremely diverse
ranges of usage. All currently available programmable pulse
shapers address the pulse spectral components by spatially
separating them. Thus, they necessarily introduce a spatio-
temporal coupling (see section 3.2.3).

In order to buy or develop the right pulse shaper for a given
experiment, we recommend listing its requirements in terms of

4
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Table 1. Simple shaping set-ups. (a) Michelson interferometer producing two delayed pulses, (b) propagation through a dispersive bulk
medium (length L, index n), (c) grating compressor (θi incident angle, θd diffraction angle, D distance between the two gratings and d the
interline spacing) and (d) chirped mirror (in a chirped mirror, the penetration depth depends on the wavelength which introduces chirp on a
Fourier-limited pulse). The first column gives a schematic of the set-up, the second column its transfer function and the last column gives a
few references.

(a)

H (ω) = 1
2
(1 + eiωτ ) for example [48]

(b)
L

n(ω)

H (ω) = eiφ(ω)

φ (ω) = n (ω)Lω/c
[49]

(c)

D

d
θdθi H (ω) = eiφ(ω)

φ (ω) = 2ω
c
D cos(θi+θd)

cos θi

[50, 51, 49]

(d) H (ω) = |H (ω)| eiφ(ω)

|H (ω)| is the reflectivity

φ (ω) designed until the fourth order

[52, 53]

τ
τ

central frequency, tunability, spectral bandwidth, complexity
and maximum duration of the shaped pulse, power density,
repetition rate, etc. From this list one can sort the available
solutions according to their suitability to the experiment
requirements. This may reveal that a programmable pulse
shaper is not necessary and that the required waveforms
may easily be produced using usual optics. In particular if
the complexity η (see section 2.1) of the desired shape is
above a few hundred, it exceeds the possibilities of current
pulse shapers, as we will see below. As an example, two
pulses of 20 fs separated by 60 ps leads to a complexity of
3000! Fortunately, this is easily achievable using a Michelson
interferometer. Table 1 summarizes the main devices which
may be more appropriate, for some specific shapes, even if
they are less versatile than a programmable pulse shaper.

3.2. A spatial mask in the Fourier plane of a zero dispersion
line

3.2.1. Introduction. In 1983, Froehly and co-workers [54]
proposed a new design of versatile pulse shaper, the so-called
zero dispersion line or 4f-line.

A 4f -line is a particular spectrometer composed of two
diffraction gratings and two lenses arranged in a 4f set-up,
where the CCD camera is replaced by a mask (cf figure 5).
Each spectral component is angularly dispersed by the first
grating, then is focused to small diffraction spots in the Fourier
plane by the first lens (or mirror). Thus, in this plane, all
the spectral components are spatially separated and focused.
Then a second combination of lens (or curved mirror) and
grating allows the recombination of all the frequencies into a
single collimated beam. If nothing is placed in the Fourier
plane then the device is dispersion free (zero dispersion

Femtosecond
pulse in

Shaped
pulse out

f fff

FP

Figure 5. A zero dispersion line composed of two gratings and two
lenses of focal length f , arranged in a 4f set-up. The output pulse
is identical to the input pulse. In the Fourier plane FP, all the
spectral components are spatially separated and focused.

line) and the output pulse shape is identical to the input
one. By putting a specific mask in the Fourier plane, one
can modify the optical path and/or optical density for each
spectral component and thus shape the output pulse. For
ultrashort pulses (broad spectral bandwidth), the lenses are
often replaced by cylindrical or spherical mirrors to avoid
unwanted dispersion and chromatic aberrations. Depending
on the mask, a 4f pulse shaper controls the phase [11], both
phase and amplitude [55], the polarization [56] and also the
transverse spatial profile [57].

3.2.2. 4f-line theory in a few equations. We present here
the basic equations that govern 4f -line abilities for shaping
[58]. We consider the input pulse to be Gaussian in both
time and space, with a central frequency ω0 (corresponding to
a central wavelength λ0), and with the following FWHM in
intensity:

5
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FP

X

~
Ein(X)

~
Ein(ω)

g(X)

f f

Figure 6. Half a 4f -line : the Fourier plane is situated in the back
focal plane of the lens. f is the focal length. X is the spatial
coordinate in this plane. g(X) is the spatial extension of a given
frequency component. θi is the incident angle on the grating. d is
the grating period. θd is the diffraction angle.

• �ωL in the spectral domain,
• �t in the temporal domain6,
• �xin in the spatial domain7.

As shown in figure 6, the input pulse is diffracted by
the first grating with an angle θd at λ0 (θi being the input
angle), d is the grating period and f the focal length. In the
Fourier plane, each spectral component has a finite size �x0

due to diffraction. It is easily derived from Gaussian beam
propagation:

�x0 = 2 ln(2)
cos θi

cos θd

f λ0

π�xin
. (11)

Let us now consider the spatial coordinate X in the Fourier
plane. Assuming linear dispersion, a frequency ωk is located
in the Fourier plane at Xk given by

Xk = αωk (12)

where α is set by the 4f -line geometry:

α = λ2
0f

2πcd cos θd

. (13)

The frequency resolution is easily obtained from
equations (12) and (13):

δω = �x0/α. (14)

Through the Fourier transform, this corresponds to a window
T in the time domain

T = 4 ln(2)/δω = �xin/|v| (15)

where |v| has the dimension of velocity:

v = cd cos θi/λ0. (16)

T is the time window available for shaping and equation (15)
clearly states that it is proportional to the input waist. This
unexpected property of the 4f -line is a manifestation of spatio-
temporal coupling (see section 3.2.3 for more details) and
v is usually called the spatio-temporal coupling velocity. T
defines a temporal upper bound for shaping achievable with
such a 4f -line: the duration or the time delay of the shaped
pulse should stay below T ; otherwise strong distortions will
occur. The temporal lower bound is given by the inverse of the

6 Time and frequency FWHM in intensity verify the following inequality:
�t�ωL � 4ln(2).
7 It is related to the waist win of the beam at the input of the 4f -line, by
�xin = win

√
2 ln(2)

spectral bandwidth of the input pulse, which means that the
shaper’s shortest feature is governed by the available optical
bandwidth8.

Numerical applications

• In the IR [60], gratings: 1/d = 2000 gr mm−1; f =
600 mm; beam diameter �x = 2 mm, incident angle
θi = 64◦, λ0 = 800 nm, �λL = 10 nm. This leads to
a temporal window T � 24 ps and a complexity η � 255.

• In the mid-IR [61], 1/d = 300 gr mm−1; f = 125 mm;
incident angle (Littrow configuration) θi = 47◦, �x0 =
250 μm, λ0 = 4900 nm , �t = 140 fs. This leads to a
temporal window T � 78 ps and a complexity η � 557.

To turn a 4f -line into a pulse shaper, we put a mask in its
Fourier plane. It has a number of control parameters which can
be pixels or not. Then to maximize pulse shaping capability,
one should fulfil the following constraint:

control parameter number � η (17)

This mask will act both as a spatial mask MX and a spectral
mask Mω. Immediately after the mask, the pulse can be written
as

Ẽafter(ω,X) = Ẽin(ω) · g(X − αω)MX(X) (18)

where

g(X) = exp[−2 ln(2)(X/�x0)
2] (19)

is the spatial extension of a given frequency component. As the
position and frequency are coupled in the Fourier plane, both
the spectral and spatial components of the pulse are affected
by the mask. As a result, propagating the pulse through the
second half of the pulse shaper requires special care and goes
beyond simple Gaussian propagation. Setting this aside using
Gaussian propagation gives a linear expression for the output
pulse Ẽout(ω):

Ẽout(ω) = H(ω)Ẽin(ω) (20)

where

H(ω) =
∫

Mω′g(ω′ − ω)dω′ = Mω ⊗ g(ω) (21)

and Mω(ω) = MX(αω). To obtain this expression, we have
implicitly assumed that the spatial profile is unaffected by the
mask, which is a strong simplification. As a consequence, this
expression is only valid for sufficiently smooth and simple
shapes and for the on-axis part of the pulse (that remains after
a subsequent spatial filtering).

An illustration of the effect of the time window T is given
in figure 7(c) that shows the intensity trace of a pulse delayed
using a 4f pulse shaper. As the programmed delay moves
away from 0, the pulse peak intensity decreases and follows
a Gaussian envelope of FWHM in intensity of around 24 ps,
which corresponds to the temporal window T [60].

8 It is possible to obtain a shorter pulse than the Fourier-limited one by
shaping the spectral amplitude. The cost is the appearance of a pedestal in the
time domain as well as a decrease of energy [59].
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Figure 7. Space-time coupling in the case of a delay: (a) theoretical
plot versus time and transverse position of a shaped pulse for
various programmed delays. (b) Cross-section of the plot (a) along
the axis of propagation (transverse position = 0). (c) Experimental
cross-correlations of shaped pulses for various delays.

3.2.3. Spatio-temporal coupling. Let us describe more
precisely the way the 4f-line acts on the beam. The first
grating couples each frequency ω into a given direction kω and
the first lens (or mirror) maps kω to a given position Xω in
the Fourier plane. As a result, the position Xω in the Fourier
plane corresponds both to a certain spectral component and
to a certain direction (i.e. a certain spatial frequency). The
part of the mask lying at Xω thus acts simultaneously on
both ω and kω and this is the origin of the spatio-temporal
coupling. After going through the second half of the 4f -
line, all the components are recombined. At the output of the
pulse shaper, the net result of spatio-temporal coupling is that
the transverse profile of the beam is modulated according to
the temporal shape of the pulse.

For example in the case of a delay, the mask is a
linear spectral phase applied to both frequencies and spatial
frequencies. The shaped pulse is thus shifted in time, but
also shifted along the transverse coordinate. This is illustrated
in figure 7(a) where we have plotted the pulse profile versus
time (horizontal axis) and space (vertical axis) for various
programmed delays: as the delay is changed, the pulse
appears to move along a slanted line (black dash) whose slope
is precisely the spatio-temporal coupling speed v. Several
articles [62–64], including recent ones [65, 66] have covered
spatio-temporal coupling in detail.

Spatio-temporal coupling is inherent to all programmable
pulse shapers and in particular 4f -line pulse shapers and
cannot be avoided, in particular when asking for complex
waveforms or when pushing a 4f pulse shaper to its limits.
One simple test to determine if spatio-temporal coupling is
negligible is if one is able to shape the phase without affecting
the amplitude of the pulse (a π -step spectral phase could be

a good test as demonstrated in [64]). However, its effect
can be reduced by designing a 4f -line with a spatio-temporal
coupling speed v as small as possible. Impressive results
have been obtained in an open-loop coherent control approach
which clearly demonstrate that this effect is not detrimental
for these experiments [36, 38].

3.3. Most common masks

Nowadays different kinds of masks can be placed in the
Fourier plane of a 4f -line to form a pulse shaper. We
propose to describe in more detail the liquid crystal and the
acousto-optic modulator masks, which are the most commonly
used in the field. Some others are also available and will
be briefly mentioned afterwards. For all these masks, one
important parameter is the total refresh time which is the time
required to obtain a given programmable waveform. This time
includes the loading time depending on the data transfer mode
(USB, GPIB, etc) and the physical refreshing time depending
on the mask itself (for example, orientation of the liquid
crystal, travelling time of the acoustic wave, movements of
the actuators, etc).

3.3.1. Liquid crystal masks. Each pixel of a liquid
crystal spatial light modulator (LC-SLM) is a programmable
waveplate controlled by voltage. An LC-SLM consists of a
thin layer of nematic liquid crystal placed between two glass
substrates. One substrate is covered with transparent ITO
(indium tin oxide) electrodes which allow the application of
independent voltages to each pixel. The nematic liquid crystals
are small rods which are oriented parallel to the substrate when
no voltage is applied. Their anchorage direction is fixed by
brushing of the electrodes. When a voltage is applied, the
nematic molecules tend to align along the field. This modifies
the birefringence of the medium, leading to a modification
of the optical path for light polarized along the anchorage
direction. For a frequency ω, the pixel acts as a waveplate
whose phase φ is given by

φ(ω,U) = ω�n(ω,U)eCL

c
(22)

where �n(ω,U) is the index difference between the slow and
fast axes, U is the applied voltage and eCL is the liquid crystal
thickness. The pixels have a typical width of 97 μm with a
gap of 3 μm (cf figure 8(a)). This gap is not really controlled
and will lead to undesirable effects (see below).

To achieve amplitude and phase shaping, two spatial light
modulators are needed with the anchorage direction at +45◦

and −45◦ with respect to the horizontal axis. By placing
horizontal polarizers at both the input and output of the 4f -
line, the complex transfer function of one particular pixel k
can be written as

Hk = exp

(
i
φ1(ωk) + φ2(ωk)

2

)
cos

(
φ1(ωk)− φ2(ωk)

2

)
(23)

where ωk is the frequency impinging on pixel k. φ1 and φ2

correspond respectively to the phase introduced by the first
and second LC-SLM. With the same set-up, it is also possible
to shape phase and polarization, by removing all the polarizers
[56]. In that case, however, one should keep in mind that most
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Figure 8. (a) 640 pixel liquid crystal spatial light modulator. (b) A
folded zero dispersion line geometry with almost no optical
aberration. G: grating; IM: intermediate mirror; CM: cylindrical
mirror; FM: folding mirror; SLM: liquid crystal mask.

of the usual optics (mirrors, beamsplitter, gratings, etc) are
polarizing elements that can alter the waveform.

Alignment and calibration. The performance and accuracy
of the pulse shaper are strongly correlated to the quality of
the alignment and the calibration. At least three steps are
necessary to obtain a reliable pulse shaper that can be used
in an open-loop experiment. We will describe these steps for
a 4f -line fitted with two LC-SLMs (to shape both phase and
amplitude).

• The first step consists of a careful alignment of the 4f -
line. This step depends on the chosen geometry and
optical components. Several geometries with varying
degrees of compacity and optical aberrations [60, 67–70]
have been used. We will focus on the folded geometry
[60] as depicted in figure 8(b) as it is easy to align and
almost aberration-free. In this line, distances are such that
the grating is in the front focal plane of the cylindrical
mirror and the folding mirror in its back focal plane. The
input beam is first diffracted by the grating G, and then
sent to the cylindrical mirror CM via an intermediate flat
mirror IM. The cylindrical mirror focuses each spectral
component to a given transverse position in the Fourier
plane. A folding mirror FM is placed in this plane and
sends everything back with a small vertical tilt. The mask
is situated as close as possible to the Fourier plane [63]
(it should stay within the Rayleigh range). The final
step for the alignment is to check that the device is
really a zero dispersion line by measuring both input and
output pulse durations (either autocorrelation or a self-
referenced technique can be used as mentioned in section
4 on characterization techniques).

• The second step is to calibrate the introduced phase
φ(ω,U) as a function of both voltage and frequency,
for each LC-SLM. In principle, each pixel should be
calibrated independently and at the specific frequency
that impinges on it. In practice however, the process is

Figure 9. Phase-voltage calibration at 795 nm of a CRI-128
LC-SLM. Top curves: transmitted intensity as a function of the
applied voltage, for several orientation of the waveplate; the position
of the extrema depends on the extra phase added by the waveplate
(dashed line is a guide to the eye). Bottom curve: reconstructed
phase as a function of the voltage.

much simpler. First, the LC-SLM is usually homogeneous
enough to use a unique voltage calibration for all
the pixels. Second, from the voltage calibration at
one specific frequency ωcal, we can derive the voltage
calibration for any frequency:

φ(ω,U) = φ(ωcal, U) · ω

ωcal
· �n(ω, 0)

�n(ωcal, 0)
. (24)

A simple way to calibrate the phase is to place the LC-
SLM between two horizontal polarizers, illuminate with a
monochromatic laser at ωcal and measure the transmitted
intensity Ical as a function of the voltage U applied to all
the pixels of the mask9. From equation (23), we get that
Ical(U) ∝ [cos(φ(ωcal, U)/2)]2. In theory, it is easy to
invert this relation and retrieve φ(ωcal, U). In practice
however, problems arise at each extremum of Ical(U)

where the retrieved phase gets noisy and highly distorted.
To overcome this difficulty, a waveplate is added next to
the LC-SLM to introduce a variable phase φwp so that the
transmitted intensity now reads:

Ical(U, φwp) ∝ [cos(φ(ωcal, U)/2 + φwp/2)]2 (25)

By repeating the voltage calibration for various φwp, we
get a set of transmission curves with shifted extrema
as shown in figure 9, top curves. By combining the

9 In the case of a dual LC-SLM, each LC-SLM is calibrated independently,
while the second one is switched off.
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retrieved phase from each curve we obtain a phase-voltage
calibration that is distortion-free across the whole voltage
range as shown on the bottom curve of figure 9.

• The last step is to calibrate the dispersion of the pulse
shaper, i.e. the mapping (Xk, ωk). The nonlinear
dispersion law is known and can be written as

X(ωk) − X0 = f · tan

[
arcsin

(
2πc

ωkd
− sin(θi)

)

− arcsin

(
2πc

ω0d
− sin(θi)

)]
(26)

where Xk is the position of the kth pixel, ωk is the
frequency on the pixel k, X0 is the position of the central
frequency, ω0 is the central frequency, f is the focal
length, d is the grating period and θi is the incident
angle. The adjusted parameters in the experiment are
X0 and θi . Practically, we measure the spectrum of the
output beam using a well-calibrated spectrometer with at
least the same spectral resolution as the 4f -line. To pair
the frequency ωk with the pixel k, we program a zero
transmission at the pixel k or a π -jump between the pixels
k and k + 1. This leads to a hole in the spectrum that is
easy to spot. Knowing the dispersion law (equation (26)),
ten points across the spectrum are sufficient to precisely
calibrate the spatial dispersion in the Fourier plane. This
calibration is required each time the alignment of the 4f -
line is modified.

Results. The LC-SLMs have been among the first arbitrary
masks used in a 4f -line. They have been widely and
successfully used in a broad range of application as pulse
compression [71], coherent control with high/low repetition
rate lasers [3, 33–38], biological imaging [6], in quantum
optics [40] and recently to cool molecules [72] but also to
control ablation processes [73].

Thanks to their wide transparency windows, they can
be used on a broad spectral range from the IR to the UV
(cf table 2). They have been carefully studied by several
groups and used to do spectral phase shaping, as well as phase
and amplitude [11] or polarization shaping [56]. They are
commercially available and sold by several companies leading
to a variety in terms of geometrical aperture, number of pixels,
refresh rate, anti-reflection coatings. Table 2 outlines some of
the available devices, given some technical characteristics as
the number of pixels, the type of control, the damage threshold,
etc.

To illustrate the abilities of the LC-SLM 4f -line,
experimental data obtained with our high-resolution pulse
shaper [60] are shown in figure 10. It is composed of one pair
each of reflective gratings (with 2000 gr mm−1) and cylindrical
mirrors (f = 600 mm). Its active elements—two 640 pixel
LC-SLMs from Jenoptik—are installed in the Fourier plane.
This provides a high resolution of 0.06 nm/pixel [60], with a
typical 24 ps time window. The shortest temporal feature
obtained in this experiment is 94 fs. In figure 10, three
examples are presented: (a) three equal amplitude pulse pairs
with relative intensity 1/2:1:1/3, (b) a square pulse of 700 fs
and (c) three pulses with cubic, flat and quadratic phase. In
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Figure 10. Three experimental waveforms (black dots) are
presented: (a) three equal amplitude pulses pairs with relative
intensity 1/2:1:1/3, (b) a square pulse of 700 fs, and (c) three pulses
with cubic, flat and quadratic phase. The solid grey line is the
analytical desired waveform intensity.

each example, black dots correspond to the experimental result
whereas the solid grey line is the target analytical waveform.
The effects of gaps and the spatial profile (Gaussian temporal
envelope) are almost compensated for in the applied mask.

Limitations. As mentioned above, inside the gaps of a
pixelated LC-SLM, the phase is not controlled. In a first
approximation the LCs behave as if there were no applied
voltage. All the gaps thus have the same transmission and a
small fraction of the whole spectrum is transmitted through
the gaps, leading in the time domain to a small replica of
the input beam at t = 0, clearly visible in figure 11(a),
where a chirped pulse has been programmed. It is possible
to compensate for this gap replica by programming a replica
of similar intensity but in opposite phase: they will cancel
each other by destructive interference. As the behaviour in the
gaps is not controlled, an iterative procedure is often needed
[63] to find the right compensation replica.

The second main limitation is the pixellization. Pixels are
regular discrete elements. Their width in the spectral domain
is denoted δω. The mask thus induces a discretized transfer
function in the frequency domain. By Fourier transform, the
impulse response is a periodic function [74] with a period
Trep = 2π/δω. Figure 11(b) presents two examples of delayed
pulses which have been programmed at �15 ps and �20 ps
using our high-resolution pulse shaper [60]. For each one a
chirped replica appears respectively at �−20 ps and �−15 ps,
which correspond to the period Trep ≈ 35 ps. This value is
in agreement with the pixel size in the spectral domain δλ =
0.06 nm (i.e. δω ≈ 0.177 rad ps−1). The replica is chirped
due to the nonlinear dispersion in the Fourier plane. However,
the Gaussian temporal window (due to the spatial profile in
the Fourier plane) will attenuate the replicas situated close
to the edge of the window.
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Table 2. Summary of available spatial light modulators for 4f -line based pulse shapers and few characteristics used in experiments of cited
references. LC: liquid crystal, AOM: acousto-optic modulator, MEMM: micro-electro mechanical mirrors, MMDM: micro-machined
deformable mirror and 2D LC: a 2D liquid crystal device. λ0 is the laser source wavelength used in the references, the control type shows for
which shaping SLM can be used, parameter number is the independent points of control of the mask. The efficiency is the transmission
(LC), diffraction (AOM) or reflection coefficient. The refreshing rate gives the refreshing pattern frequency of the mask and finally the
damage threshold is indicated with the source used for its evaluation. NA: characteristic not available.

Mask Ref λ0 (nm) Control type Param. number Efficiency Refresh. rate (Hz) Damage threshold (GW cm−2)

[97] 400 Amplitude 2*648 85% >1.3 (395 nm, 30 fs)
LC [69] Vis Phase 2*128 85% ∼10 4 (890 nm, 50 fs)
(pixelated) [60] 800 Polarization 2*640 95% 300 (800 nm, 45 fs)

[89] 260 170 78%
[78] 400 200 NA Fused silica: NA

AOM [98] Vis Amplitude 900 NA ∼105

[76] 800 Phase 900 30–90% TeO2 : 0.1

[61] 4900 500 80% Germanium: NA

MEMM [93] 266 Phase 240*200 NA Aluminium
(pixelated) [92] 400 240*200 85% ∼102

coating

MMDM [90] 800 Phase 3*13 97% ∼103 Gold coating

2D LC [95] 805 Amplitude 480*480 ∼50% NA NA
(pixelated) [96] 800 Phase 1920*1080 ∼55% 60 NA

Trep

Trep

(a)

(b)

Figure 11. (a) Cross-correlation of a chirped pulse with a reference
ultrashort pulse. The gap-replica is clearly visible. (b) Cross-
correlation of two delayed pulses: +15 ps (black solid line) and +20
ps (grey solid line); replicas due to the pixellization of the mask are
clearly seen respectively around −20 ps and −15 ps. Their temporal
broadening is due to the nonlinear dispersion in the Fourier plane.
Trep is the period of the replicas, given by the spectral pixel size.

To exploit the spatial resolution of the mask, the incident
frequency components should be focused to a spot size
comparable with or less than the pixel width. If the spot
size is too small, replica waveforms that arise from discrete
Fourier sampling will not be attenuated. If the spot size is
too big, the blurring of the mask will give rise to substantial
diffraction effects [63].

Finally, as mentioned above, the physical refreshing time
is defined as the time required by the liquid crystal to be
oriented (hundreds of μs). Contrary to acousto-optic devices
that rely on a travelling wave (see the next section), once
oriented, the LCs stay still and the waveform is stationary.
This means that the physical refreshing time does not limit the
repetition rate of the laser. LCs are often used with oscillator
sources, although may not be operated on a shot-to-shot basis.

3.3.2. Acousto-optic modulator masks. An acousto-optic
modulator (AOM) to be used as a SLM has been developed
by Warren and co-workers [75, 76] in 1994. The spatial mask
pattern is driven by a temporal radiofrequency voltage signal,
and converted into a travelling acoustic wave by a piezoelectric
transducer [77]. Scaled into space by the acoustic velocity (vac)
in the AOM crystal, it acts as a refractive index grating. The
grating period is given by the local wavelength of the acoustic
waveform ( = vac/ν) where ν is the RF drive frequency.
This waveform can be simultaneously phase-, amplitude- and
frequency-modulated through appropriate RF synthesis. Each
spatially dispersed frequency component is then diffracted (see
figure 12) with the appropriate phase and amplitude which
leads to the desired Fourier transform pulse shaping.

The acousto-optic effect is based on a parametric
interaction [77]. As in the parametric effect case, a phase
matching condition has to be fulfilled. The efficiency of
diffraction in different orders is given by the phase mismatch
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Figure 12. Programmable pulse shaper based on the use of a
4f -line and an acousto-optic modulator. A radiofrequency wave is
generated and converted to an acoustic wave by a piezoelectric
modulator. This travelling wave acts as a diffractive grating mask.
vac is the acoustic wave velocity; l is the aperture of the AOM.

δm between the diffracted wave in the mth order and the free
acoustic and optical waves:

δm ∝ �kmL ∝ Q

(
m − sin θ0

sin θB

)
(27)

with the Bragg angle given by

sin θB = λ0

2n
. (28)

This angle maximized the first-order diffraction. n is the
refractive index and L is the thickness of the crystal, λ0 is
the optical wavelength,  is the acoustic wavelength and θ0 is
the incident angle of the optical wave on the acousto-optical
modulator. Q is a dimensionless parameter, usually used to
classify AOM regimes. It is defined by

Q = 2π
L

Leff
= 2πλ0L

n2
(29)

where Leff is an effective length.

• In the Raman–Nath regime, the AOM is described as a thin
grating L  Leff which corresponds to Q � 1. This leads
to a good phase matching for the different orders as can be
seen on equation (27). Moreover, it has been shown that
the efficiency scales quadratically with acoustic amplitude
[76]. This regime allows the best spatial resolution but a
limited efficiency of around 30%.

• For Q � 4π , which means L � Leff , the AOM works in
the Bragg regime. Once again, regarding equation (27),
the mismatch will increases dramatically with the order of
diffraction. Phase matching for the first order is obtained
at the Bragg angle. In this regime, the efficiency could in
principle reach 90%.

A good compromise between efficiency and resolution for
pulse shaping application appears for Q � 4π [76].

Alignment and calibration. The first step to use the shaper
consists of a careful alignment of the 4f -line as for LC-SLM.
Then the AOM is placed in the Fourier plane and tilted until it
reaches the Bragg incidence angle. For TeO2 (λ0 = 780 nm,
n = 2.26, vac = 4.2×103 m s−1 and ν = 200 MHz), this gives
θB = 0.47◦ inside the crystal corresponding to 1.1◦ in air [76].

MR
G

MC

MRGMC

FM

FM

Undiffracted
Beam

AOM

Femtosecond
pulse in

Shaped
pulse out

Figure 13. Experimental set-up of a 4f -line with an AOM spatial
mask. A first alignment of the line is done without the AOM. In a
second step, the folded mirrors (FM) are used to compensate for the
AOM deflection. The first one is used to enter the AOM at the
Bragg angle whereas the second is used to compensate for the
diffraction angle.

(a) (b)

Figure 14. Taken from [79]. Calibration curves for AOM pulse
shaper. (A) Each line represents a shaped spectrum created with a
short RF pulse delayed in time in the AOM. Each delay corresponds
to a different spatial position on the AOM leading to a different
spectral position. This figure is used to calibrate the pulse shaper
response function with respect to amplitude and time. (B) Data from
A viewed as a contour plot. The solid red line fits the data; the
coordinates are then used to calibrate the RF time with respect to the
optical wavelength.

The second grating should be moved to compensate for the
diffraction. The set-up, shown in figure 13, is particularly
well suited for AOM masks [61, 78]. Its advantage is the
presence of two folding mirrors at each side of the AOM,
which allows an easy compensation of the tilt induced by the
AOM.

The next step is to calibrate the RF time versus the optical
frequency and leads to a mask function M(ω) = f (tRF =
αω). The procedure of this experimental calibration is detailed
in [79]. An experimental trace is shown in figure 14.

Results. First let us briefly describe the main operating
characteristics of an AOM (a complete overview can be found
in [76]).
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Figure 15. Taken from [76]. Dashed line: intensity cross-
correlation trace of a shaped femtosecond pulse using AOM-SLM.
The waveform used consists of an initial Fourier-limited pulse
followed in time by pulses shaped with linear, quadratic, cubic and
quartic spectral phase. Solid line: theoretical trace.

• The refreshing rate is limited by the travelling time of the
acoustic wave across the modulator aperture l (figure 12).
For TeO2 (typical AOM crystal used in the visible and
the NIR), the acoustic velocity is vac = 4.2 mm μs−1. In
[76], the modulator has a 4.3 cm aperture, which leads
to a corresponding time aperture10 �τ = l/vac = 10 μs.
With such parameters, the diffraction pattern can then be
updated on the microsecond time scale.

• The shortest resolution available is now given by the
shortest acoustic feature size δx, which can be compared
to a pixel in LC-SLM. The number of control parameters
is given by an effective number of pixels:

N eff
pix = l

δx
= �τ�f (30)

where �f is the modulation bandwidth of the AOM, and
l is the AOM aperture. It leads to approximately 900
effective pixels in [76]. The real resolution of the shaper
is given by the combination of N eff

pix and 4f -line properties
described above. The typical complexity already obtained
experimentally is in the order of few hundreds (around 200
for [78] and 500 for [61]).

Several groups [80–84] have performed optimal control
with this mask whose refresh rate can be as high as 100 kHz
for a typical AOM shaper. It has also been used
for pulse compression [78, 80, 85] as well as coherent
control [86, 87] and for multidimensionnal spectroscopy
[5, 85, 88]. Several materials with acousto-optic properties
are commercially available which allows the exploration of
a very broad spectral range from the UV using fused silica
[78, 89] to the mid-IR using germanium [61]. In this spectral
range, it is probably the best technique for pulse shaping.

Figure 15 [76] shows an example of complex phase and
amplitude shaping. The source is a femtosecond oscillator
with an 82 MHz repetition rate; a pulse picker reduces
it to 20 kHz (the acoustic refresh rate is in the order of

10 This time is, for the acoustic device, the physical refreshing time defined
above.

(a)

(b)

Figure 16. Taken from [61]. (a) Wigner diagram obtained from (b).
(b) Cross-correlation of a linearly chirped shaped pulse at 4.87 μm
or 2050 cm−1 in the mid IR.

weff

kin

kdiff

kac

L

θB

FP

Figure 17. Illustration of the limitations due to the geometry and
the thickness of the interaction. The spectrum is dispersed along the
vertical direction and three monochromatic frequency components
are plotted. To keep the same spatial resolution across the thickness
L of the AOM, the average diameter of the beam weff must be less
than the minimum acoustic feature. Due to the phase matching angle
(θB ), the Fourier plane (FP, dashed-dot line) is not in the median
plane of the crystal. This limits the available aperture of the device.

100 kHz). The waveform consists of an initial Fourier-limited
pulse followed in time by a replica, a linearly chirped pulse
with a quadratic spectral phase, a cubic spectral phase pulse
and finally a quartic spectral phase pulse.

An other example in the mid-IR is shown in figure 16
[61]. It consists of a linearly chirped pulse at 4.9 μm and its
corresponding Wigner function.

Limitations. The nonlinear geometry of the 4f -line and the
nature of the interaction lead to different limitations from the
LC-SLM 4f -line. A detailed review of them can be found in
[76], and is summarized here.

• Each acoustic grating pattern appears frozen during the
interaction with a femtosecond pulse. As it has to be
synchronized with the optical pulse, the repetition rate of
the laser is limited. An optical pulse is diffracted each
physical refreshing time �τ of the modulator. With the
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numerical values above [76], this gives a repetition rate
that has to be below 100 kHz.

• The geometry of the interaction (figure 17) shows that,
due to the phase matching angle θB , the effective optical
spot size has a diameter weff which should be smaller than
the minimum acoustic feature in order to maximize the
resolution. Moreover, also due to this phase matching
angle, the Fourier plane (FP, dashed-dot line) is not in
the median plane of the crystal. To allow interactions
with a good resolution, the focus of each spectral
component should be included in the crystal (modulo their
Rayleigh length zR). Thus, the angle between the Fourier
plane and this median axis fixes the available optical
bandwidth and the acoustic frequency (equation (28)).
As the acoustic bandwidth is generally proportional to the
acoustic frequency, this fixes also the minimum acoustic
feature and thus the achievable complexity.

• The geometry of the line also introduces dispersive effects.
First, the path lengths vary significantly for different
optical frequencies (longer for the blue than the red,
see figure 12). This effect, which is in the first-order
quadratic, has to be compensated for. A second effect is
related to the Bragg angle and its dependence on optical
frequencies. The mismatch is much more important for
short (broadband) pulses and limits the extension of AOM
pulse shaping to very short pulses.

• Finally, the absorption of the acoustic wave limits the
crystal length and nonlinear effects on the acoustic waves
imposes the need to work at relatively low efficiency.
Moreover it is sometimes required to work in a closed-
loop regime in order to compensate for this effect and to
reach the desired optical waveform.

3.3.3. Other masks. In parallel with the two main spatial
light modulators (LC-SLM, AOM), other masks have been
developed for specific applications:

• MMDM: this micro-machined deformable mirror is
commonly used for wavefront correction of nonlinear
effects. It is composed of a coated membrane suspended
over an array of actuator electrodes on a printed circuit
board [90]. The deformation of the reflecting surface is
governed by an electrostatic force. Such a MMDM mask
placed in the Fourier plane of a folded 4f -line allows
smoothly varying phase-only modulation, in addition
to low losses and relatively high actuator density. It
represents a fairly low-cost solution which could be
extended over a very broad spectral range depending on
the coating of the mirror. Compression of ultrashort pulses
down to 15 fs [90] as well as more complex pulses shaping
[91] have been obtained.

• MEMMS: this is a micro-electro-mechanical system
placed in the Fourier plane of a folded zero dispersion line.
It consists of an array of independently addressable piston-
type micro-mirrors, which are fabricated by surface-
micro-machining. The device is activated by applying
a voltage between the mirror and the address electrode,
which causes the mirror to move back [92]. The choice
of the coating allows high efficiency from the UV to the

NIR. Compressions as well as complex pulses obtained
by phase modulation have been demonstrated by several
groups [92–94]. The main drawback is the appearance
of strong replicas due to both pixellization and the large
gaps between the mirrors.

• 2D-LC-SLM: this is a phase-only LC-SLM consisting of
a matrix of pixels. The spectral components of the pulse
are spread across the horizontal dimension, and a sawtooth
phase function is applied along the vertical direction by
the 2D LC-SLM to each frequency component [95] (the
period of this function determines the direction of the first-
order diffracted light). The spatial phase (i.e. vertical
position) and amplitude of the sawtooth pattern can be
varied for each spectral component to modulate the phase
and the amplitude of the diffracted light [57]. Depending
on the way the sawtooth phase function is used, a high
efficiency or a superior dynamic range of modulation
can be obtained [96]. Complex pulse shapes as well as
simple compression have been successfully demonstrated
[57, 96].

Table 2 gives an outline of the main technical
characteristics of available masks presented in this section.
Technical details such as control type, parameters number,
efficiency, refreshing rate and damage threshold are given
where available in the cited reference.

3.4. Shaping by phase transfer

The second approach to shape the amplitude and the phase of
an ultrashort pulse is to perform frequency mixing between
the input pulse and a control field f (t) which can be either in
the optical or in the acoustic domain.

3.4.1. Acousto-optic programmable dispersive filters
(AOPDF). A 4f pulse shaper is one of the oldest and
most widespread apparatus for pulse shaping. However, an
alternative system has appeared in the 1990s called AOPDF
or DazzlerTM as its commercial name (Fastlite). It is based
on the acousto-optic interaction between a controlled acoustic
wave f (t) and an optical ultrashort pulse E(t) [99, 100]. The
interaction is similar to the Bragg diffraction which occurs
in chirped mirrors. In the latter, the grating is permanent,
fixed by the dielectric coatings. In the AOPDF, the acoustic
wave creates a longitudinal transient grating which maximizes
the interaction length. Practically, the acousto-optic crystal
is highly birefringent for the acoustic as well as for the
optical waves. In the crystal, the acoustic wave shapes
by diffracting the ordinary incoming optical wave to the
diffracted extraordinary optical wave. Thus, optical pulse
shaping in phase and amplitude is achieved through anisotropic
interaction. The change of polarization is produced by the
anisotropic interaction which is different from the isotropic
interaction in the AOM spatial light modulator.

As shown in figure 18, the input optical pulse is chosen
to propagate along the ordinary axis (fast axis).

The different spectral components are diffracted on the
extraordinary axis when the wave vectors and frequencies fulfil
the phase matching condition and energy conservation:
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z(ω)

Extraordinary
(slow axis)

Ordinary
(fast axis)

Figure 18. AOPDF principle: by diffraction on the acoustic grating
through an acousto-optic interaction, the different spectral
components can be switched to the extraordinary axis at different
positions in the crystal.

�kdiff (ωdiff) = �kac (ωac) + �kin (ωin) (31)

ωdiff = ωin + ωac � ωin (32)

where ‘diff’ denotes the diffracted optical beam, ‘in’ denotes
the input optical beam and ‘ac’ denotes the acoustic wave.
This means that the spectral components can be switched to
the extraordinary axis at different positions in the crystal, by
changing the frequency ωac along the crystal. As the group
velocities of the ordinary and extraordinary axis are different,
one gets a different arrival time at the output of the crystal for
each wavelengths. This time depends on the phase matching
between the acoustic and the optical frequencies. Moreover the
acoustic intensity at the switch location controls the amplitude
of the diffracted spectral component.

The shape of the diffracted wave thus depends on both the
switch position and the local acoustic intensity. One can write
in the spectral domain

Ẽdiff(ω) ∝ Ẽin(ω) · f (γω) (33)

or equivalently in the time domain

Ediff(t) ∝ Ein(t) ⊗ f (t/γ ) (34)

where the scaling factor γ = ωac/ω � (vacδn)/c (∼10−7 in
TeO2). δn is the crystal optical anisotropy, vac the acoustic
wave velocity. The factor γ allows the transfer of the acoustic
waveform to the shape of the optical wave.

The shaping properties of the AOPDF have different
origins from 4f -line shapers and have to be properly defined:

• As for the other pulse shapers, it is possible to define a
time window in which it is possible to shape the pulse.
This window has a different physical origin than for a 4f -
line and is mainly determined by the crystal thickness and
its anisotropy. The shortest programmable delay is fixed
by a complete propagation along the ordinary axis while
the longest delay corresponds to a propagation along the
extraordinary axis. The difference between both gives the
maximum time window:

Tmax = δng cos2(θin)
L

c
(35)

where L is the length of the crystal and δng the group
index difference. For a 25 mm TeO2 crystal [100] this

gives Tmax � 3 ps at 800 nm and for a 72 mm KDP crystal
Tmax � 7 ps at 300 nm [101]. Usually a part of this
window is used to self-compensate for the dispersion due
to the propagation in the acousto-optic crystal itself. This
leads, in general, to an available time window of few ps.

• The resolution is given [102] by

δλ = 0.8

δn cos2(θin)

λ2

L
(36)

where θin is the angle between the incident wave vector
and a reference crystallographic axis. The resolution is
typically equal to 0.25 nm at 800 nm and down to 0.1 nm
at 266 nm for commercially available devices.

• The number of control parameters, Ncp, is given by the
number of resolution points in the programmed diffracted
bandwidth. In the case of phase-only shaping, this
bandwidth has to be broad enough to diffract all the
optical components with a nearly constant amplitude.
Experimentally, it is set to three times the optical
bandwidth, which gives

Ncp = �λ

δλ
= δnL

0.8
cos2 θin

3�λ

λ2
. (37)

For a 72 mm KDP crystal (θin = 48.5◦, δn = 0.045 and
�λ = 3 nm at 410 nm) [101], this gives Ncp � 100 and
around 400 in the IR [102].

• The efficiency depends on the phase matching, the
length of the crystal, the merit factor of the crystal, the
wavelength and finally the acoustic power. A detailed
theoretical description can be found in [102].

Design and alignment. Taking into account the value of the
scaling factor γ , the acoustic wave should have a frequency
value around tens of MHz to allow the shaping of visible
wavelength (hundreds of THz). The acoustic wave is a
travelling wave synchronized with the optical wave. It is
generated by a transducer glued on the crystal and monitored
by a high frequency synthesizer (cf figure 19).

The crystal angle is chosen to give the best compromise
between efficiency and resolution [102].

In practice, two experimental parameters are important:

• The alignment of the beam within the AOPDF has to be
performed carefully. The beam has to enter the AOPDF
horizontally, in the centre and normally to the inner
face (auto-collimation). The best resolution is achieved
when the beam is carefully collimated. The fine angular
alignment of the device is made by shaping the diffracted
optical beam with a thin hole in amplitude and looking at
its spectrum. The corresponding spectrogram will present
a hole which can be spectrally shifted by rotating the
AOPDF. Once the hole is at the same wavelength as the
programmed one, the phase matching condition is fulfilled
and the AOPDF aligned.

• Due to the difference of speed in the crystal, the acoustic
wave is seen frozen by the optical one. However, it is a
travelling wave and it has to be precisely synchronized
with the optical wave. To avoid any spectral clipping, the
acoustic wave should be centred in the crystal when the
optical waves enter in it.
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the output face
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circuitry
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Figure 19. Experimental view of the AOPDF (courtesy of N Forget): the optical wave propagates collinearly with the acoustic waves
induced by the transducer glued on the acousto-optic crystal (here TeO2). The optical wave is diffracted on the acoustic wave and the shaped
pulse goes out of the AOPDF following the diffracted beam direction. The size of the apparatus is a few cm in the IR–visible and around
10 cm in the UV.
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Figure 20. Results obtained with an AOPDF. In the visible range: (a) autocorrelation of the output of a NOPA compressed by the AOPDF
and (b) the corresponding spectrum. In the UV range (270 nm): (c) cross-correlation of a 13-pulse sequence with a reference ultrashort
pulse at 800 nm and (d) the corresponding spectrum.

Results. The AOPDF has been often used at the input of
an amplifier in order to compensate for high-order dispersion
leading to impressive results in the IR [103]. Intense shaped
pulses have also been obtained directly at the output of a
visible amplifier [104], leading to pulse duration around 30 fs
(see figure 20(a): output autocorrelation, (b) output spectrum).
Many other applications have been demonstrated such as
high harmonic tunability [105], compression of fibre amplifier
outputs [106], coherent control experiments [107]. AOPDFs
are now available for wavelength ranging from 200 nm [101,
108] to 2 μm. Figures 20(c) and (d) present a 13-pulse
sequence obtained at 266 nm. Improvements are under study
to fabricate an AOPDF in the mid-IR [109].

Limitations

• The main limitations of the AOPDF are related to the
fact that it is basically an acousto-optic modulator. For
example, the travelling time of the acoustic wave in the
crystal limits the repetition rate of the laser: the acoustic
wave has to be refreshed for each incoming optical pulse,
which limits the repetition rate to hundreds of kHz. As in
an AOM 4f -line, nonlinear effects as well as absorption
will also occur on the acoustic waves.

• Other limitations are strongly linked to the nature of the
interaction: shaping is done by delaying the different
spectral components. So on the one hand, in order to have
a good efficiency in the interaction, the acoustic wave
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has to be spread along the whole crystal and on the other
hand, the spreading of the acoustic wave in the crystal is
mainly governed by the programmed shape. This means
for example that programming a strongly chirped pulse
will lead to a more efficient interaction than programming
a short pulse which implies that all the optical frequencies
will be diffracted over a very short time [110].

• Nonlinear effects on the optical waves will be more
important due to the fact that the pulse is not spatially
dispersed as it is in a 4f -line, leading to higher fluence.

• Finally, as frequency components are diffracted at
different positions in the crystal, they will suffer from
spatio-temporal coupling.

3.4.2. Nonlinear frequency mixing. The prospect of
generating an arbitrarily shaped optical pulse has triggered
significant developments in many fields of fundamental and
applied research. This has led to a great effort to extend the
spectral ranges where such shaped pulses are available. One
way which has been detailed above is to develop pulse shapers
in different spectral ranges. Another option is to use nonlinear
mixing to transfer the shape of the control pulse obtained easily
in the NIR range to another wavelength range. Interesting
results have been obtained in the mid-IR [111, 112] as well
as in the UV range [113, 114]. However, this phase transfer
occurs with constraints in terms of phase matching conditions,
energies and bandwidths. For example, when sum frequency
mixing a control field with an independent field, the technique
is linear. However, this is no longer true when generating
the second harmonic of a control field. In particular, many
works have demonstrated that the shape of the input pulse can
completely alter the bandwidth of the SHG-generated pulse
[4, 115]. As demonstrated in [116, 117], the use of two chirped
pulses allows a very efficient generation of second harmonic
picosecond pulses.

3.5. Conclusion on pulse shaping

This section, albeit many pages long, only shows the tip of the
iceberg of pulse shaping. Before listing some achievements
using different kind of pulse shapers, we would like to remind
the reader of a few facts when dealing with a pulse shaper:

• The shortest feature at the output of the pulse shaper will
always be governed by the available optical bandwidth.

• The maximum temporal window T will be given by
the set-up as well as the optical beam properties (see
section 3.2.2).

• Arbitrary pulse shapers provide a complexity η of few
hundreds. This gives the ratio between the bandwidth
and the minimum spectral feature available in the spectral
domain or T/δt in the time domain. Sometimes a simpler
device may achieve a higher complexity (see table 1).

Finally more than hundreds of references in various fields
are using pulse shapers. Table 3 presents some realizations of
pulse shapers. They are sorted by shaper type and wavelength
range. When available, the input pulse properties are given as
well as the shaping type. Then the main results are specified.

This table does not mention all the specific references which
detail the analysis and limitations of those techniques. For
this information, the reader should refer to the corresponding
sections above.

4. Characterization of ultrashort shaped pulses

4.1. Prerequisite and generality

When looking for a characterization technique, beginners may
be puzzled by the number of available methods. Indeed, there
exist a vast variety of methods, ranging from simplistic and
limited to the most complex and refined one. We will not
describe all of them here and interested readers are invited
to read a recent review in this domain [13] and the various
articles of a special issue on pulse characterization [127] for
a more exhaustive overview. We will restrict ourselves to
the most widely used methods, lying in three categories with
increasing degree of complexity and refinement. Methods
lying in the first category are said to provide incomplete
characterization of the pulse. They usually give an estimate
of the pulse duration or of the pulse intensity envelope without
allowing a full reconstruction of electric field E(t). The
most widely used methods for incomplete characterization
are presented in section 4.2. The two other categories
contain referenced complete characterization methods, and
self-referenced complete characterization methods. All these
methods allow a full reconstruction of the electric field E(t).
The main difference between the first and the second category
is that methods lying in the first one necessitate the use
of a fully characterized reference pulse (see section 4.3)
whereas methods in the latter category do not need any (see
section 4.4).

In the following, we will equivalently refer to a pulse
in the time domain by either its real electric field E(t) or its
complex counterpart E(t) as the latter usually leads to simpler
equations.

4.2. Incomplete characterization methods

These methods are among the easiest to implement and are
extremely widely used. However, they provide limited insight
into the pulse structure but are nonetheless useful for a quick
estimate of the pulse duration. The two methods we will
present here are based on nonlinear correlation in a χ(2) crystal,
namely pulse autocorrelation and cross-correlation between
two different pulses. The former is more adapted to pulses
close to the Fourier transform limit whereas the latter can be
used to get some insight into the time structure of a shaped
pulse using an ancillary short pulse.

In the following, we will assume that the χ(2) crystal used
is thin enough to avoid any spectral windowing due to phase
matching.

4.2.1. Autocorrelation. Autocorrelation is one of the oldest
and most widely used methods to estimate the duration of a
short pulse. The principle is the following: the test pulse is
split into two replicas with a relative delay in a Michelson
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Table 3. Table of arbitrary pulse shaping experimental demonstrations; the first column mentions the shaper type, the second column, the
citation number, the third and fourth column are the main source parameters (central wavelength, duration). The shaping type can be P:
phase only, P-A: phase and amplitude pulse shaping or Pol: polarization pulse shaping. Finally, in the last column, the main results of the
reference are presented. NA: characteristic not available. SFM: sum frequency mixing; DFM: difference frequency mixing. SHG:
second-harmonic generation. THG: third harmonic generation.

Source parameter

Shaper type Ref. λ0 (nm) �t (fs) Shaping type Main results

400 35 P Compression of ultrashort pulses[97] 800 40 in UV and IR using LC mask

[69] Vis <20 P-A Closed-loop compression down to 16 fs from a
non-collinear optical parametric amplifier (NOPA)

[118] Vis NA P-A White-light shaping and amplification. Production
of different colour pulses

[67] 778 30 Pol Control of two photon absorption using
polarization shaping

[60] 795 100 P-A High-resolution (0.06 nm/pixel) phase and
amplitude pulse shaper

[119] 800 70 P-A First use of two 4f -line shaper for amplitude and
phase control

4f -line + LC (pixelated) [68] 800 13 P Complex phase shaping of ultra-broad-bandwidth
pulses

[56] 800 80 Pol Polarization pulse shaping

[70] 800 20 P Phase shaping improvement using 512 pixels

[120] 800 30 P Robust and flexible set-up for pulse shaping

[121] 804 50 P High-resolution (0.15 nm/pixel) phase shaping
using 640 pixels

[122] 800 4.3 P Pulse shaping of octave spanning fs pulses with
prisms-pulse shaper. Source: oscillator

[123] 800 6 P
Pulse shaping of octave spanning fs pulses with
prisms-pulse shaper. Source: amplifier+argon filled
glass capillary fibre

[89] 260 55 Deep UV pulse shaping using fused silica AOM

[78] 400 100 First implementation of direct UV shaping using
AOM

[80] 400 100 Closed-loop pulse compression in the UV and
optimization of CARS signal

[98] Vis NA Amplification and shaping of white light from a
NOPA. 70 nm@620 nm

4f -line + AOM [75] 620 180 P-A First implementation of AOM based pulse shaping

[81] 777 30 Closed-loop optimization of multiphoton transfer in
the strong field regime

[76] 780 90 Theoretical and experimental study of the
limitations of AOM based pulse shaping

[79] 795 150 Amplified pulse shaping (pulse shaper placed in
front of the amplifier) (200 μJ)

[61] 4900 140 Direct pulse shaping in the mid IR. Efficiency up to
30%

270
[108] 330 55 Complex and tunable shaping in the UV using

AOPDF with KDP crystal
404

[101] 402 NA Theory and experiments on UV AOPDF. Efficiency
up to 50%

[104] 500 − 650 30 Shaping at the output of a NOPA. Efficiency up to
50%

17



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 103001 PhD Tutorial

Table 3. (Continued.)

Source parameter

Shaper type Ref. λ0 (nm) �t (fs) Shaping type Main results

[107] ∼570 �λ = 60nm Optimal control and enhancement of the
three-photon fluorescence from molecular iodine

AOPDF
[100] 800 17

P-A

First shaping using TeO2 AOPDF. Compression
down to 17 fs was achieved by fine phase and
gain narrowing correction

[103] 800 10 Production of terawatt scale sub-10-fs laser pulse
at 1 kHz repetition rate

[105] 810 30 Enhancement of the efficiency and tuning of the
high harmonic generation using a closed loop

[113] 200 155 A Amplitude shaping at 200 nm using SFM of a
shaped fundamental pulse and THG pulse

[114] 344 19 P-A UV shaping using SFM between a shaped NOPA
pulse and a stretched IR pulse

[124] 400 NA POL UV polarization shaping by SHG in two nonlinear
crystals of a polarization-shaped IR pulses.Phase transfer

[125] 3000–10 000 ∼200 fs P Mid IR phase shaping by DFM of the signal
(1.1–1.6 μm) of an OPA and the idler

[126] 3300 NA P-A
Mid IR phase shaping by OPA process using
shaped IR pump pulse by an AOM placed in a
4f-line

[111] 12 000 NA P Phase shaping in the IR by DFM between two
fundamental chirped pulses

[93] 266 100 Compression of deep UV broadened pulses using
a closed loop

4f -line + MEMM
(pixelated) [94] 320 30 P Phase control of tunable UV pulse and two

photon autocorrelation

[92] 404 80 First shaping using MEMM. Compression and
sinusoidal modulation

[90] 800 15 P High-order compression down to 15.2 fs using a
closed-loop approach4f -line + MMDM

[91] 842 ∼100 P Precise phase control and characterization using
negative feedback

2D LC (pixelated) [95] 805 40 P-A Amplitude and phase shaping using a phase-only
2D spatial light modulator

[96] 800 ∼50 P-A Comparison between two pulse shaping scheme
in terms of efficiency and modulation

interferometer, and both replicas are focused and spatially
overlapped inside a χ(2) crystal. The intensity of the generated
second harmonic is recorded as a function of the delay. When
both replicas overlap in time inside the crystal, the second
harmonic signal increases: the better the overlap, the higher
the second harmonic signal. There exist two different kinds
of autocorrelators: background-free intensimetric ones [128]
and interferometric ones [129].

Intensimetric autocorrelator is described in figure 21: the
two delayed replicas are focused in the crystal with an angle.
The second harmonic generated inside the crystal contains
three contributions: the upconversion of the first replica E(t)

with itself, the upconversion of the second replica E(t − τ)

with itself and the cross-term between both replicas. Due

χ

Michelson τ
E(t)

Figure 21. Intensimetric autocorrelator: the two delayed replicas
are focused on the crystal with an angle and only the cross-term of
the second harmonic is recorded.

to momentum conservation rules, each contribution exits the
crystal in a different direction, the cross-term being on the
axis. Using a spatial filter, this term is selected and sent
to a slow photodiode. The electric field impinging on the
photodiode can thus be written as E2(t, τ ) ∝ E(t)E(t − τ).
The photodiode is assumed to be slow compared to the pulse
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duration: in other words, the electrical signal it provides is
proportional to the integrated intensity of E2(t, τ ):

S(τ) ∝
∫

|E2(t, τ )|2 dt ∝
∫

I (t)I (t − τ) dt. (38)

The intensimetric autocorrelator thus gives access to the
autocorrelation function of the intensity envelope of the test
pulse. It is said to be ‘background-free’ as the signal goes
back to zero when the two replicas do not overlap in time. The
main advantage of such a device is its simplicity. However,
it provides limited information on the pulse itself. Indeed,
to estimate a pulse duration from the autocorrelator signal,
one has to make an assumption on the pulse profile [128].
Moreover, the autocorrelation function is symmetric in time,
which means that a pulse preceded by a pre-pulse will give
the same signal as a pulse followed by a post-pulse. This
time ambiguity can be particularly limiting when trying to
compensate for cubic phase terms. Finally, the intensimetric
autocorrelator does not provide any information on what is
below the envelope. In particular, a chirped pulse can give
exactly the same autocorrelation signal as a longer Fourier-
limited pulse.

The interferometric autocorrelator differs from the
intensimetric one in that both replicas are collinearly focused
in the crystal. In this case, the electric field impinging on the
photodiode contains all the terms of the second harmonic and
the signal is now

S(τ) ∝
∫

|E(t) + E(t − τ)|4 dt. (39)

There are two main differences with the signal given by
the intensimetric autocorrelator. First, even when both
replicas are not temporally overlapped, the signal is not zero
as it contains the upconversion signal from each replica:
the interferometric autocorrelator is not background free.
Second, the interferometric signal exhibits fast oscillations
corresponding to the beating between the different terms in
the second harmonic generation. By Fourier analysis of
these oscillations, the pulse spectrum can be retrieved. An
interferometric autocorrelator thus provides both an estimate
of the duration and the pulse spectrum, the combination of
both allowing an estimate of the time bandwidth product of
the test pulse.

4.2.2. Intensimetric cross-correlation. The two
autocorrelation methods presented above work well for simple
pulses close to Fourier limited. However, they provide limited
insight for complex pulses such as pulse sequences or strongly
shaped pulses exiting from a pulse shaper. For this kind
of pulses, intensimetric cross-correlation with a short pulse
is better suited. As shown in figure 22, the only difference
between cross-correlation and autocorrelation set-ups is that
one of the two replicas of the test pulse is replaced by an
ancillary short pulse.

Such a cross-correlation set-up provides us with a
reconstruction of the intensity profile I (t) of the test pulse,
convoluted by the intensity profile of the short ancillary pulse.
As an example, figure 10 shows the cross-correlation signal
obtained when using a 100 fs ancillary pulse to characterize

E(t)

χ

τ

Figure 22. Cross-correlation: the test pulse E(t) is non-collinearly
mixed with a short one in a χ(2) crystal and the sum-frequency
signal is recorded as a function of the delay τ between each pulse.

different complex shaped pulse sequences. One feature of
intensimetric cross-correlation is that the delay does not need
to be optically stable (i.e. with a jitter lower than the optical
period). Moreover, ancillary and test pulses can be in different
spectral domains. The only constraint is that the ancillary
pulse has to be coherent with the test pulse, and short enough
to resolve its intensity structure. The main limitation is that
intensimetric cross-correlation does not give any information
on the phase. As an example, when characterizing a pulse
sequence, the cross-correlation signal will be independent of
the relative phase between the pulses in the sequence [130].

4.3. Referenced complete characterization methods

Methods presented here allow for the full reconstruction
of the electric field E(t) of the test pulse provided a fully
characterized reference pulse is available. As we have seen in
section 2.1, all the information concerning an ultrashort pulse
is contained in its electric field E(t), or equivalently in both its
spectral phase ϕ(ω) and spectral amplitude A(ω). A complete
characterization of a short pulse should thus give either E(t)

or both ϕ(ω) and A(ω). Unfortunately, for a femtosecond
pulse, a direct measurement of E(t) is not achievable. Indeed,
it would require a detector with a time response shorter than
the optical cycle of the pulse to characterize (typically few
femtosecond in the visible). Such a detector does not exist and
the fastest detectors exhibit time response around hundreds of
femtosecond11. Any complete characterization method must
thus provide an indirect way to access both ϕ(ω) and A(ω).

For that purpose, referenced complete characterization
methods make use of a reference pulse whose spectral phase
ϕref(ω) and amplitude Aref(ω) are perfectly known. The
two main referenced techniques are spectral interferometry
and Fourier transform spectroscopy. They are conceptually
extremely close and completely equivalent, the only difference
being that the former lies in the frequency domain whereas the
latter in the temporal domain.

4.3.1. Spectral interferometry. Pioneered by Froehly and co-
workers [132], spectral interferometry is based on a simple set-
up that contains barely more than a spectrometer, as depicted in
figure 23. The test pulse E(t) and the reference pulse Eref(t)

are recombined with a delay τ and sent into a spectrometer.
The complete characterization is a a two step process. First,
the reference is blocked and only the test pulse is sent to
the spectrometer. As one would expect, the spectrometer
measures

I (ω) = ∣∣Ẽ(ω)
∣∣2 = A2(ω) (40)

11 The only exception to date is the direct measurement of a few-cycle
femtosecond pulse by sampling with an XUV attosecond pulse [131].
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E(t)

Eref(t-τ)

Spectro
τ

E(t)
Spectro

(a)

(b)

Figure 23. Spectral interferometry: the test pulse E(t) is sent into a
spectrometer either (a) alone to measure spectral amplitude or (b)
together with a delayed reference pulse Eref(t − τ) to retrieve the
spectral phase.

from which the spectral amplitude of the test pulse A(ω)

is directly retrieved. In the second step, both pulses are
sent into the spectrometer with a fixed delay τ . The signal
from the spectrometer now exhibits fringes that are due to the
interference between both pulses:

I (ω) = ∣∣Ẽ(ω) + Ẽref(ω) eiωτ
∣∣2

= A2(ω) + A2
ref(ω) + 2A(ω)Aref(ω)

× cos [ϕ(ω) − ϕref(ω) − ωτ ] . (41)

The cosine term, responsible for the fringes, contains two
contributions. The main one, −ωτ , is due to the delay and sets

(b)(a)

Figure 24. Fourier filtering for spectral interferometry. (a) Principle: the interferogram is Fourier transformed and only one side lobe is kept
and back Fourier transformed, giving access to the relative spectral phase θ(ω). (b) Top: experimental interferogram using two UV pulses,
one Fourier limited and one chirped. Bottom: the retrieved relative phase is in grey, the retrieved spectrum is in black.

the overall fringe spacing. The second one, ϕ(ω) − ϕref(ω),
encodes for the spectral phase difference between the test and
reference pulses and locally modifies the fringe spacing. In
other words, the interferogram can be interpreted in terms of
frequency modulation: the delay acts as a carrier frequency
modulated by the phase difference. The most common way
to extract this phase difference from the interferogram is to
use Fourier filtering [133, 134] to isolate the oscillating term
and extract its argument. We first take the Fourier transform
of I (ω). As depicted in figure 24, it consists of three lobes
respectively centred around time −τ , 0 and τ . The latter is
the one containing the phase information we care about. We
select this side-lobe by applying a window filter around it.
Last, we Fourier transform back this side-lobe. This gives the
following complex function

Iτ (ω) = A(ω)Aref(ω) exp[i(ϕ(ω) − ϕref(ω) − ωτ)] (42)

from which we can extract the argument:

θ(ω) = ϕ(ω) − ϕref(ω) − ωτ (43)

As ϕref(ω) is a known quantity, we can retrieve ϕ(ω)

modulo a linear phase term −ωτ . This linear term simply
corresponds to a temporal delay and does not modify the shape
of the test pulse. We usually remove the linear component of
ϕ(ω) to centre the retrieved E(t) at t = 0.

Spectral interferometry thus provides a measurement of
both A(ω) and ϕ(ω) from which the electric field E(t) can be
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reconstructed. However, several conditions must be fulfilled.
First, in order to get interference, the test and reference pulses
need to be mutually coherent (out of the same laser source).
Moreover, as can be seen in equation (42), the phase can only
be reconstructed where both the spectral amplitude of the test
and reference pulses are non-zero. It means that the spectral
amplitude of the reference pulse needs to encompass that of
the test pulse. The last two conditions concern the delay τ .
First, τ needs to be small enough for the fringes to be correctly
sampled on the spectrometer. If δω is the spectral resolution
of the spectrometer, in order to get at least six points per
period12, we need to fulfil τ < τmax = 2π/(6δω), which sets
an upperbound for τ . Second, there is also a lower bound
for τ that originates from the Fourier filtering. Indeed, for it
to work correctly, the three lobes at −τ , 0, τ should be well
separated. This implies that τ > 3T , where T is the duration
of the longest of both the reference and test pulse.

4.3.2. Fourier transform spectroscopy. Fourier transform
spectrometry [134] contrary to its spectral counterpart does
not necessitate a spectrometer. Instead, it relies on a simple
photodiode whose signal is recorded as a function of a variable
delay τ between two pulses. It is particularly interesting for
spectral regions where spectrometers can be hard to find, e.g.
in the mid-IR.

As for spectral interferometry, the retrieval of the test pulse
is a two step process: the temporal interferences between two
replicas of the test pulse give access to the spectral amplitude
whereas the temporal interferences between reference and test
pulses allow retrieving the spectral phase. As the photodiode
is supposed to be slow, it acts as an integrating detector and
provides a signal

SA(τ) =
∫

|E(t) + E(t − τ)|2 dt (44)

for amplitude measurement and

Sϕ(τ ) =
∫

|E(t) + Eref(t − τ)|2 dt (45)

for phase measurement.
In both cases, the Fourier transform of the interferogram

reveals three components at −ω0, 0 and ω0, where ω0 is the
centre frequency of the test pulse. The term at ω0 contains
all the information we need. For amplitude measurement
this term gives Ẽ(ω)Ẽ∗(ω) = A2(ω), which is the spectral
intensity of the test pulse, whereas for phase measurement this
term now reads Ẽ(ω)Ẽ∗

ref(ω), whose argument is the relative
phase θ(ω) between test and reference pulses. From these two
quantities and provided the reference is fully characterized,
one can reconstruct the test pulse.

However, there are some constraints on the acquisition of
both interferograms for this technique to work correctly: in
order to avoid aliasing in the Fourier transform, the time step
δt should be smaller than the optical period t0 = 2π/ω0. In
practice δt � t0/6 is enough. Once the time step is fixed, the
number of acquired points N set the spectral resolution δω with

12 In theory, the Shannon criterion says that three points are enough. In
practice, we recommend six points.

which both A(ω) and ϕ(ω) will be reconstructed. The needed
resolution depends on the structure of the spectral phase and
amplitude. For a smooth bell-shaped spectrum with a slow
varying phase, a couple of tens of points across the spectrum
is usually enough. Moreover, as for spectral interferometry,
the reference pulse needs to be coherent with the test one and
its spectrum has to encompass that of the test pulse.

4.4. Self-referenced complete characterization methods

The methods for referenced complete characterization
presented above contain a huge loophole. Indeed, they rely
on a fully characterized referenced pulse. Moreover, the
reference pulse and the test pulse need to have similar spectral
properties (central frequency, bandwidth, etc). In other words,
referenced characterization methods can solve the problem of
ultrashort pulse characterization provided it has already been
solved once. But how do we characterize the first reference
pulse?

The solution is to use a self-referenced complete
characterization technique that does not require a reference
or, in other words, that takes the test pulse as a reference for its
own measurement. Methods lying in this category are the most
powerful for short pulse characterization in the sense that they
do not use any prior knowledge to achieve the reconstruction
of the test pulse electric field E(t). However, this comes
with a price and these methods put high requirements on
the experimental set-up. In particular they require at least
nonlinear or non-stationary optics. The reason for these
requirements will be explained in section 4.4.1. We will
then present both of the two widely used self-referenced
complete characterization techniques: FROG in section 4.4.2
and SPIDER in section 4.4.3.

4.4.1. Prerequisite for self-referenced measurement of ϕ(ω).
What do we need to completely characterize a test pulse E(t)

without resorting to a reference pulse? Can we use ‘usual
optics’, that is time-stationary linear optics? We can always
try. As we have seen in section 3.1, any time-stationary linear
optical set-up can be described by a complex transfer function
H(ω). If we input a test pulse Ẽ(ω) we get as the output

Ẽout(ω) = H(ω)Ẽ(ω). (46)

This set-up can be arbitrarily complex, containing many beam-
splitters, interferometers or even several pulse shapers; its
output can always be written as in equation (46), the complex
transfer function gathering all the subtleties of the set-up. Now
the best we can do is to measure the output pulse Ẽout(ω).
For that purpose, we do not have a lot of possible detectors:
either slow photodiodes or spectrometers can be used. We
will continue our discussion using a spectrometer but the
same conclusion can be drawn using a photodiode. The
spectrometer gives access to the spectral intensity

Iout(ω) = |Ẽout(ω)|2 = |H(ω)|2|Ẽ(ω)|2 = |H(ω)|2A2(ω).

(47)

As we can see, all the information on the spectral phase
ϕ(ω) has disappeared from the expression of the signal we
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E(t)E(t) G(t-τ)

τ

Figure 25. Principle of frequency optical gating: the test pulse E(t)
is temporally sliced (or gated). The spectrum of this gated pulse is
measured as a function of the delay τ between the gate G(t) and the
test pulse.

measure. The only information on the pulse we can gain
from this type of measurement concerns the spectral amplitude
A(ω). This explains what we have seen in section 4.3 on
referenced measurements: the reference was not needed to
measure the spectral amplitude but was necessary to retrieve
the spectral phase using linear optics. In conclusion of
this quick try, the spectral phase of a short pulse cannot be
measured using stationary linear optics, unless we use a fully
characterized reference [135]. We thus need to use nonlinear
or non-stationary optics to achieve self-referenced complete
characterization of a short pulse. This is a necessary but not
sufficient condition to get a complete measurement13.

4.4.2. FROG and other variants. The oldest established
technique for self-referenced complete characterization is
called frequency-resolved optical gating, or FROG [25, 136].
The main idea in FROG is to temporally slice (or gate) the
test pulse E(t) and measure the spectrum of this gated pulse
as a function of the delay τ between the gate G(t) and the test
pulse, as depicted in figure 25.

This gives a 2D signal,

S(τ, ω) ∝
∣∣∣∣
∫

E(t)G(t − τ) eiωt dt

∣∣∣∣
2

, (48)

that corresponds to a spectrogram of the test pulse (see
equation (8) in section 2.2). From this 2D map, one can extract
the spectral phase and amplitude of the test pulse using an
iterative algorithm [136–138]. It is worth noting that extracting
the pulse information from S(τ, ω) corresponds to the well-
known 2D phase retrieval problem that can be found in many
different fields. Moreover, the complete characterization of
the test pulse remains possible even if the gate G(t) is not
fully characterized or even completely uncharacterized. There
exist various implementations of FROG and they mostly differ
by the way the gate G(t) is generated. What all these
implementations have in common is that they always require
a nonlinear interaction to generate the gate.

13 In particular, both autocorrelation and cross-correlation contain a nonlinear
crystal without allowing a complete measurement of the test pulse.

(a)

PG-FROG

χ(3)

Michelson

WP
P

Spectro

(b)

SHG-FROG
χ(2)

Michelson Spectro

(c)

XFROG
χ(2)

Spectro

Figure 26. Schematic set-up of various versions of FROG
techniques. (a) Polarization gating FROG, (b) second harmonic
generation FROG and (c) cross-correlation FROG. WP is a wave
plate to tune the polarization, P is a polarizer, χ(2) and χ(3),
nonlinear susceptibilities.

PG-FROG. One of the very first implementations was the
polarization gating (PG)-FROG [137] where the gating is
implemented using the interaction between two copies of the
test pulse E(t) in a χ(3) medium, as shown in figure 26(a).
In this particular implementation, a Kerr optical-gate is used
and it results in a gate function following the intensity profile
of the pulse G(t) = |E(t)|2. With PG-FROG and for a
reasonably simple test pulse, S(τ, ω) is a fairly intuitive
spectrogram. Some key features from the test pulse (such as for
example the presence of chirp and its sign) can thus be grasped
directly by looking at S(τ, ω) without resorting to the iterative
algorithm.

SHG-FROG. The most widely used FROG implementation
is the second harmonic generation (SHG)-FROG [139] and
its derivatives [137, 140]. One of the most widespread
SHG-FROG is the so-called GRENOUILLE [140], a single-
shot spectrally resolved autocorelation. As depicted in
figure 26(b), it is more easily implemented than PG-FROG as
it is just an intensimetric autocorrelator where the photodiode
has been replaced by a spectrometer. Now, the gate is just a
time-delayed replica of the test pulse G(t − τ) = E(t − τ)

and the signal reads

S(τ, ω) ∝
∣∣∣∣
∫

E(t)E(t − τ) eiωt dt

∣∣∣∣
2

. (49)

Although easier to implement than PG-FROG, SHG-based
FROG presents two disadvantages. First, the 2D signal is not
as intuitive as the PG-FROG one. Second, as can be seen in
equation (49), this signal is symmetric in time which means
that there is a time ambiguity and the algorithm can retrieve
either E(t) or E(−t). One should keep this in mind when
trying to compensate for chirp or to get rid of pre- or post-
pulses.

XFROG. The last FROG implementation we will present
here is the so-called XFROG [141] combined with the fast
iterative algorithm called PCGPA [138]. This combination is
particularly suited for the characterization of strongly shaped
pulses or for the simultaneous characterization of pump and
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Figure 27. Taken from [144]: referenced XFROG trace and
retrieved temporal intensity of a supercontinuum out of
microstructured fibre using the input of the fibre as a reference.

probe pulses in coherent control experiments. XFROG is a
spectrally resolved cross-correlation between two pulses, as
shown in figure 26(c). Its signal takes the form

S(τ, ω) ∝
∣∣∣∣
∫

E(t)EG(t − τ) eiωt dt

∣∣∣∣
2

(50)

where EG denotes the gate pulse. XFROG thus
possesses all the advantages of intensimetric cross-correlation:
interferometric stability is not required for the delay between
pulses and both pulses can lie in different spectral regions.
It also has the ability to fully characterize both test and gate
pulses simultaneously when used with PCGPA [138].

Moreover, if the gate pulse EG(t) is short compared to the
test pulse E(t), the signal S(τ, ω) is an extremely intuitive
spectrogram of the test pulse (see figure 3). XFROG is
particularly suited to characterize the output of a pulse shaper,
using a portion of the input pulse as the gate pulse. However, in
many cases, XFROG is also used as a referenced measurement
[142, 143] by using a fully characterized gate pulse, as it leads
to better convergence of the retrieval algorithm. This can be
useful to characterize the output of a microstructured fibre, as
shown in figure 27.

Even when used as a referenced measurement, XFROG
suffers from the same limitation as the cross-correlation: it
cannot retrieve the relative phase of non-overlapping pulses of
a pulse sequence.

Closing words on FROG. FROG is a powerful technique for
self-referenced complete characterization of ultrashort pulses.
Many variants of FROG exist [25, 136–138, 140, 141, 145,

146] (see also table 1 in [12]). Table 4 lists some achievements
using various variants of FROG. Some of these variants give an
intuitive signal that trained user can partially interpret without
recurring to an iterative algorithm. Moreover, FROG devices
are relatively easy to implement and existing set-ups (such
as an autocorrelator or a cross-correlator) can be adapted to
measure FROG traces.

The main drawback of FROG lies in the 2D nature of the
signal and the iterative algorithm used to analyse it. First, the
sampling and the covered range for both time and frequency
axes have to be carefully chosen in order to reconstruct
the test pulse with a good fidelity. In particular, as time
and frequency are conjugate variables, the settings are not
independent. Second, as all the information concerning both
spectral phase and amplitude is encoded in the slow variation
in intensity of S(τ, ω), the camera used for recording the signal
should exhibit both a high dynamic range and a high linearity.
Finally, the number of data points to record and analyse grows
quadratically with the pulse complexity η. It means that for
complex pulses, the time needed for the iterative algorithm to
converge increases dramatically.

4.4.3. SPIDER and other variants. There exists another
method for self-referenced complete characterization that was
developed a decade ago: spectral phase interferometry for
direct electric-field reconstruction, or SPIDER [153] for short.
We will present here the basic idea behind this technique
along with some of its incarnations. This is by no means
an exhaustive review, and for more details on all the different
versions of SPIDER, interested readers should look at [154]
and references therein. As its name suggests, SPIDER is
based on spectral interferometry, with a special trick to allow
for a self-referenced measurement. As we have described in
section 4.3.1, when we apply spectral interferometry to a test
pulse E(t), using a reference Eref(t − τ), we retrieve both
the spectral amplitude A(ω) of the test pulse and the quantity
θ(ω) = ϕ(ω) − ϕref(ω) − ωτ (see equation (43)) which is
the phase difference between the test and reference pulses,
modulo a linear term −ωτ corresponding to the delay between
the pulses.

The trick in SPIDER which turns spectral interferometry
(by essence a referenced measurement) into a self-referenced
measurement, is to use the test pulse itself as a reference.
More precisely, we use as a reference a copy of the test pulse
that is shifted both temporally and spectrally so that spectral
interferometry now yields both A(ω) and

θ(ω) = ϕ(ω) − ϕ(ω − �) − ωτ (51)

where � is the spectral shift (or spectral shear) and τ is the
temporal shift. If τ and � are known, we can derive from
equation (51) the following quantity:

ϕ(ω) − ϕ(ω − �)

�
≈ ∂ϕ

∂ω
, (52)

which is the phase gradient of the test pulse. From this
gradient, we can reconstruct the phase either by concatenation
or integration. The retrieved phase is the spectral phase of
the test pulse, modulo a linear term: as already pointed out in
section 2.1, this linear phase just corresponds to a delay and

23



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 103001 PhD Tutorial

Table 4. List of some of the experimental achievements using variants of FROG: for the test pulse λ0 is the central wavelength, �t is the
duration, �λ is the spectral bandwidth, E is the smallest energy per pulse and P is the smallest average power.

Source parameter

Method name Ref λ0 (nm) �t (fs)/�λ (nm) E (nJ)/P (μW) Main characteristics

THG − FROG [145] 800 �100/NA 3/3 × 105 FROG using surface THG. No time reversal
ambiguity

PG − FROG [137] 620 �100/NA �104/NA
Original FROG using third-order nonlinearity for
polarization gating. Intuitive trace, but requires
energetic pulses

[136] 620 �100/NA �104/NA FROG using self-diffraction as a nonlinear step
SD-FROG

[139] 800 �70/24 NA/NA

[147] 800 �90/NA 2/NA

SHG-FROG
Spectrally resolved second-order non-collinear
autocorrelation. Easy to set up but time reversal
and relative phase ambiguities[148] 1550 �40/150 NA/5 × 103

[149] 5000 �700/NA 100/NA

IFROG [150] 800 7/300 NA/NA
SHG-FROG but in collinear arrangement. No
blurring of the FROG trace but fringes have to be
resolved

GRENOUILLE [140] 800 �100/�20 NA/NA Simplified SHG-FROG using bi-prism and thick
SHG crystal. Time reversal ambiguity

XFROG [141] 4000 NA/�100 NA/103
Spectrally resolved cross-correlation between two
unknown pulses. Each pulse can be in different
spectral regions. Both pulses are retrieved

[143] 3000 to 11 000 �100/�200 �3 × 103/NA XFROG with one unknown mid-IR pulse and a
fully referenced IR pulse. A reference is neededReferenced

XFROG
[142] 400 �170/NA �6 × 10−2/NA

XFROG using down conversion between one
unknown UV pulse and a fully referenced IR
pulse. A reference is needed

[151] 426 �250/�1.5 200/200 FROG using transient grating. Adapted to UV
pulses

TG-FROG [152] 400 130/2.5 85 × 103/85 × 103
FROG using transient grating and a simplified
set-up like GRENOUILLE[152] 800 150/8 5 × 105/5 × 105

does not affect the shape of the pulse (that only depends on
nonlinear phase terms). SPIDER thus allows retrieving the
spectral phase ϕ(ω) of the test pulse together with its spectral
amplitude A(ω) using only a simple, non-iterative algorithm:
Fourier filtering to extract θ(ω) and additions, multiplications
and integration to derive ϕ(ω).

The conditions to fulfil for a meaningful measurement
concern both the temporal shift τ and spectral shear �.
The conditions for τ are exactly the same as for spectral
interferometry, as described in section 4.3.1: τ should be small
enough for the spectral fringes to be correctly sampled by the
spectrometer and yet longer than the duration of the pulse for
the Fourier filtering to work. The spectral shear � should
be small enough to fulfil the Whittaker Shannon theorem, or
in other words, to ensure that the sampling of ϕ(ω) is small
enough so that no information was lost in the process. In
theory any shear that respects � � 2π/T , where T is the time
interval where the pulse is non-zero, will produce an exact
reconstruction of the spectral phase and amplitude. However,

� should not be too small to avoid introducing unwanted noise
in the concatenation process. In practice, a shear � in the order
of a tenth of the spectral bandwidth of the pulse works well
enough.

So far we have not explained how the spectral shear �

is generated. This is where a nonlinear or non-stationary
stage is involved. Indeed, as shown in figure 28(a), the sum
frequency mixing between our test pulse Ẽ(ω) and a quasi-
monochromatic beam of centre frequency ω1 gives Ẽ(ω−ω1),
which is a spectrally shifted copy of the test pulse. In practice
however, this introduces a spectral shift that is two to three
orders of magnitude too high for SPIDER and that is not easily
tunable. To circumvent this problem, the set-up presented in
figure 28(b) is used: all time-delayed replicas of the test pulse
E(t) and E(t − τ) are sum frequency mixed in a nonlinear
crystal with a highly chirped pulse EC(t). This chirped pulse
acts as a quasi-monochromatic pulse whose frequency changes
slightly over time τ : ωC(t) = ω1 + t

/
ϕ

(2)
0 . Each delayed

replica is thus shifted in frequency by a different amount
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Figure 28. Spectral shearing by upconversion: (a) the upconversion
between E(ω) a quasi-monochromatic pulse Emono(ω) centred
around ω1 generates a spectrally shifted replica E(ω − ω1); (b) the
upconversion between two delayed replicas E(t) and E(t − τ) and a
chirped pulse Ec(t) leads to two delayed and spectrally shifted
replicas.
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Figure 29. Different SPIDER techniques and their schematic
set-ups. (a) Original SPIDER, (b) zero additional phase SPIDER
and (c) spatially encoded arrangement SPIDER. χ(2) denotes the
nonlinear susceptibility.

and the difference in frequency shift is � = τ
/
ϕ

(2)
0 . By

adjusting independently the chirp ϕ
(2)
0 and the delay τ between

the replicas, one can set both � and τ .

The original flavour of SPIDER. The original set-up for
SPIDER is depicted in figure 29(a). The test pulse is split
into two time-delayed replicas in a Michelson interferometer,
which are upconverted with a highly chirped pulse in a
nonlinear crystal. The upconversion signal is then sent
into the spectrometer and the spectral amplitude and phase
are extracted from the interferogram using Fourier filtering.
Usually, the highly chirped pulse is generated from the test
pulse itself by taking a fraction of it and sending it through a
double pass grating compressor. However, any chirped pulse
that is coherent with the test one may suffice. As an example,
for weak pulses, a modified version of SPIDER (M-SPIDER)
was developed [155] where the chirped pulse is taken inside

(a)

(b)

Figure 30. Taken from [156]: high dynamic range SPIDER
measurement of a 4.3 fs pulse out of a fibre compressor.
(a) SPIDER interferogram, (b) reconstructed spectral phase and
amplitude; inset: temporal intensity profile.

the chirped pulse amplifier before recompression. This highly
intense chirped pulse increases greatly the signal-to-noise
ratio.

The original version of SPIDER is relatively simple and
works well for pulses longer than few tens of femtosecond.
The problem for shorter pulses arises from splitting the
test pulse into two delayed replicas. Indeed, this implies
going through some dispersive optics, like a beam splitter,
which introduces unwanted dispersion. If the two replicas
do not experience the exactly same dispersion, the SPIDER
measurement is degraded. However, using an optimized set-
up for SPIDER [156], broadband pulses can be characterized
by SPIDER, as shown in figure 30.

Two different evolutions of SPIDER have been developed
more specifically to characterize broadband and complex
pulses. The first one, that we will not describe here, is
Homodyne Optical Technique for SPIDER (HOT SPIDER)
[157] which relies on a two-step measurement and is
particularly suitable for short and weak pulses. The second
approach is the zero additional phase SPIDER (ZAP SPIDER)
[158] which is described below.

Zero additional phase SPIDER. As its name suggests, in
zero additional phase SPIDER [158], the test pulse does not
experience any distortion before entering the nonlinear crystal.
The untouched test pulse is upconverted with two time-delayed
replicas of a strongly chirped pulse, as shown in figure 29(b).
Because of the delay τc between the two chirped replicas,
they exhibit different instantaneous frequencies when being
upconverted with the test pulse. As a result, two spectrally
sheared replicas of the test pulse are generated. However,
contrary to conventional SPIDER, these replicas are perfectly
synchronized in time as they come from the very same test
pulse. Moreover, as the two chirped pulses enter the crystal
with different angles, the two sheared replicas propagate in
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different directions. The delay τ is independently set when
recombining the sheared replicas before sending them into
the spectrometer. The interferogram is similar to that of
conventional SPIDER and the same analytical processing is
performed. Besides the clear advantage of the introduction
of virtually no distortion on the test pulse, another advantage
of this arrangement is that the temporal delay τ and the shear
� are completely independent: the former is set by delaying
one of the upconverted replica before recombination whereas
the latter can be set by changing the delay τc between the two
chirped pulses. ZAP SPIDER has proved to be particularly
efficient for shaped and weak pulses [159].

Spatial encoded arrangement for SPIDER. All the flavours
of SPIDER we have presented so far share in common the use
of spectral fringes to encode the phase gradient. However,
this is not the only option and the phase gradient can also be
encoded in time. This is the case in time domain interferometry
for SPIDER (no funny acronym here!) [160, 161] that was
developed for spectral regions where spectrometers are not
easily available.

Another possibility is to encode the phase gradient in
spatial fringes. This is the essence of the spatially encoded
arrangement for SPIDER or SEA-SPIDER [162], particularly
suited for broadband and shaped pulses. As one can see in
figure 29(c), the SEA-SPIDER set-up is close to the ZAP
SPIDER we just presented. The main difference is that the two
spectrally sheared replicas are kept synchronized in time and
are recombined, with an angle, into an imaging spectrometer.
This angle produces an ensemble of fringes along the vertical
axis of the CCD (the wavelength being dispersed along the
horizontal axis). More precisely, for a test pulse of the
form Ẽ(x, ω) (where x denotes the vertical coordinate), a
spectral shear of �, and for a difference between the transverse
component of the propagation vectors K, one gets the following
2D interferogram:

I (x, ω) = |Ẽ(x, ω)|2 + |Ẽ(x, ω − �)|2
+ 2|Ẽ(x, ω)||Ẽ(x, ω − �)|
× cos[ϕ(x, ω) − ϕ(x, ω − �) + Kx]. (53)

The retrieval of the phase gradient is a slight modification of
the conventional SPIDER algorithm: the 2D Fourier transform
of I (x, ω) is composed of three lobes, all aligned along time
0 and centred around +K , 0 and −K . By filtering of the +K

sidelobe and inverse Fourier transforming, one gets

θ(x, ω) = ϕ(x, ω) − ϕ(x, ω − �) + Kx (54)

from which one can retrieve ϕ(x, ω) by concatenation,
provided K is fully known. For a correct reconstruction,
the conditions on the spectral shear � are the same as for
conventional SPIDER, and the incidence difference K is set so
that there are few fringes across the beam (three fringes being
a minimum). An imaging spectrometer with 128 pixels across
the vertical axis is more than enough to properly sample the
spatial fringes.

So SEA-SPIDER works in a similar way as the normal
SPIDER, but what are the advantages of this approach?
First, SEA-SPIDER possesses the same properties as ZAP-
SPIDER. Moreover, as the fringes are not encoded along the
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Figure 31. SEA SPIDER intuitive traces (courtesy of A Wyatt):
SEA SPIDER traces for a femtolaser rainbow oscillator, (a) for a
positive ϕ

(2)

0 , (b) for a recompressed pulse and (c) for a negative
chirp. The small wiggles in (b) are a signature of small remaining
high-order phase.

frequency axis, the requirement on the spectral resolution of
the spectrometer is less stringent. Indeed, in conventional
SPIDER the spectral resolution has to be at least three times
better than the minimum required to fulfil the Whittaker
Shannon theorem. This high requirement on resolution is
difficult to fulfil when dealing with extremely broadband
pulses whose spectrum can span across several hundreds of
nanometers. With SEA-SPIDER, the retrieval can be done at
the sampling limit. SEA-SPIDER is thus the best SPIDER for
shaped and broadband pulses.

The second advantage of SEA-SPIDER is that the spectral
phase and the spectral amplitude are reconstructed for every
position x along the vertical axis. This means that one can
precisely measure spatio-temporal couplings such as spatial
chirp and pulse-front tilt or even more complex distortions.
This is particularly useful for broadband or shaped pulses that
often exhibit this kind of distortions.

The last advantage of SEA-SPIDER over other variants
of SPIDER is that the raw interferogram is intuitive: any
deviation from perfectly straight horizontal fringes can be
easily interpreted, as one can see in figure 31: a tilt
corresponds to a ϕ

(2)
0 (figures 31(a) and (c)), a curvature to

a ϕ
(3)
0 , and any high-order phase translates into deviation from

straight lines (figure 31(b)).

Closing word on SPIDER. SPIDER is a reliable method
for measuring short and complex pulses. It comes in many
flavours and the most up-to-date and exhaustive list can be
found in references of [154]. Some experimental achievements
using SPIDER and its variants are listed in table 5.
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Table 5. List of some of the experimental achievements using variants of SPIDER: for the test pulse λ0 is the central wavelength, �t the
duration, �λ the spectral bandwidth, E the smallest energy per pulse, P the smallest average power.

Source parameter

Method name Ref λ0 (nm) �t (fs)/�λ (nm) E (nJ)/P (μW) Main characteristics

[153] 800 �100/NA few/few 105

SPIDER

Original SPIDER. Algebraic,
non-iterative reconstruction algorithm
to retrieve the phase gradient[166] 800 �6/300 3/3 × 105

[167] 800 �100/NA NA/NA
Single shot SPIDER, with simultaneous
and independent measurements of
spectral amplitude and spectral
amplitude

[168] 650 �4/500 NA/NA SPIDER optimized for broadband
pulses

High Dynamic Range SPIDER [156] 850 �4.3/480 2 × 104/2 × 104
SPIDER using heterodyne detection
based on chopper and fast 1-line CCD
camera. Designed for octave spanning

HOTSPIDER [157] 800 �100/NA 250/250
Two-step measurement using intense
auxiliary pulse. Designed for low
average power/low intensity pulses

MSPIDER [155] 800 �100/NA 3.6/3.6

Original SPIDER but using an intense
auxiliary pulse from a chirped pulse
amplifier. Designed for low average
power like fibre output

SPIDER (DC) [169] 410 �140/4 70/70 SPIDER using down-conversion as a
nonlinear step. Designed for UV pulses

[160] 800 �100/NA NA/NA
HOT SPIDER in time domain using a
shaper and a two-photon detector.
Compact, simple set-up without
spectrometerTime-domain HOT SPIDER

[161] 9200 �150/NA 2 × 103/2 × 103
HOT SPIDER in time domain for
Mid-IR pulses. No spectrometer
required, designed for Mid-IR pulses

Electro − Optic SPIDER [170] 1540 750 to 30000/NA < 103/NA

SPIDER using non-stationary step (fast
electro-optic phase modulation) instead
of nonlinear step. Ultra-sensitive, for
telecom wavelengths[171] 1570 200/NA 5 × 103/NA

[158] 600 10/120 NA/NA

SPIDER without splitting of the test
pulse, using two auxiliary chirped
pulses. Designed for short pulses
(<20 fs)

ZAP SPIDER [159] 290 19/�10 10/10 ZAP SPIDER using down conversion.
Designed for short UV pulses

[159] 290 7/40 10/10

[172] 5100 100/400 103/103 ZAP SPIDER for mid-IR pulses

HH SPIDER [173] 73 13/8 NA/NA
High harmonic SPIDER using a double
seed scheme in high harmonic
generation. Designed for XUV high
harmonics

ZAP SPIDER but using spatial fringes.

[162] 800 100/NA 10/few 105 Requires an imaging spectrometer.
SEA SPIDER Designed for ultra-broadband,

[174] 850 7/200 � 4/�3 × 105 modulated pulses with spatiotemporal
coupling

ARAIGNEE [175] 740 to 900 70/NA NA/�103 Simplified set-up using a thick SHG
crystal for spectral shearing

TEA SPIDER (2DSI) [176] 800 5/400 2/2 × 105 SPIDER but using temporal fringes to
encode phase gradient
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The two main advantages of SPIDER compared to
competing techniques are, first, that it relies on a 1D signal
and second that the phase retrieval algorithm is analytical and
non-iterative. A 1D signal means that the amount of data to
collect and treat is extremely small. Moreover, when using a
2D detector, like in an imaging spectrometer, one has an extra
degree of freedom to play with. In SEA-SPIDER [162] for
example, this allows for a simultaneous measurement of the
spatio-temporal coupling. The non-iterative Fourier transform
algorithm allows for true real time retrieval of the spectral
phase.

One strength of SPIDER is the encoding of the phase in
fringes which allows for a good reconstruction of the phase
even with a poor dynamic range of the CCD (down to 1 bit)
and in the presence of strong noise [155].

The main drawback in SPIDER is that the calibration is
particularly crucial and should not be overlooked. However,
a new version of SPIDER [163] (chirped arrangement for
SPIDER, CAR-SPIDER), uses the extra dimension to encode
several configurations and provides a truly calibration-free
measurement. Another limitation in SPIDER is the Fourier
filtering technique (also known as the Takeda algorithm [133])
that is commonly used to extract the phase gradient from the
interferogram. This filtering can be tricky to set and is the
limiting factor in terms of acceptable noise level for phase
retrieval. A new algorithm based on fast wavelet analysis
has recently been developed which addresses these two issues
[164, 165].

4.4.4. Conclusion on characterization. Many different
characterization techniques are available, adapted to different
pulse durations and wavelengths. They range from the most
simple and limited to the more refined and complex ones.
Implementing at least one complete characterization method
is almost compulsory when using short and sometimes shaped
pulses. However, incomplete and simple methods such as
auto- and cross-correlations should not be disregarded as they
are easy to set up, fast and simple to use for daily check,
and also provide an independent measurement. Moreover,
these methods are still actively developed and extended (see
for example [94]). Concerning self-referenced techniques, we
only presented here a small selection and tables 4 and 5 give
some more details about other variants of both FROG and
SPIDER.

As a conclusion on characterization of ultrashort pulses,
we would like to give a personal view on the specific problem
of characterizing strongly shaped pulses out of a pulse shaper.
Theses pulses, because of their complexity (or high time
bandwidth product) can easily go beyond the limits of any
given method. In particular, characterizing them with a
self-referencing method (FROG, SPIDER or any variant of
both) can be particularly difficult, requires special care and
an optimized version of the method chosen for the task.
Moreover, in order to properly and accurately generate this
shaped output, the input pulse of the pulse shaper has to be
decently characterized. For all these reasons, we believe that
the most efficient approach is to combine a self-referenced
measurement of the input pulse and a referenced measurement

(a)

Stationary
Linear Filter

Pulse
Shaper

(b)

Non-Linear
process

χ(2)

(c)

Slow
Detector

Photodiode
or

Spectrometer

Figure 32. Generic set-up for complete characterization: (a) a pulse
shaper serves as a generic versatile linear filter, followed by (b) a
nonlinear process whose output is monitored by (c) a slow detector.

of the output, using the input as a reference. As the input pulse
is usually not really complex, any basic variant of FROG or
SPIDER can be use for its measurement. For the referenced
measurement, spectral interferometry or referenced XFROG
are particularly well suited and easy to set up.

5. The combination of pulse shaping and
characterization techniques

The last point we would like to mention in this tutorial is the
recent development of characterization techniques that directly
rely on a pulse shaper, an approach we decided to call ‘shaper-
assisted characterization’.

One early precursor in this domain is STRUT (spectrally
and temporally resolved up-conversion techniques) [177]
where a 4f pulse shaper with a fixed slit is used to produce a
spectrally narrowed replica of the test pulse (see [177, 178] for
more details on the technique itself). However, in STRUT, the
pulse shaper is not programmable and plays less of a central
role than in more recent implementations.

The key idea behind this approach is that most pulse
shapers can be turned into versatile characterization devices
by simply adding few optical elements that are usually already
present in the lab. Indeed, a complete characterization
technique can be implemented by combining three key
ingredients: a linear stationary filter, a nonlinear optical
process, and a slow detector as sketched in figure 32. In
shaper-assisted characterization techniques, a pulse shaper is
used in order to implement the linear stationary filter with the
rest of the set-up using already available elements (nonlinear
crystal, photodiode or spectrometer). In order to characterize
the pulse entering the pulse shaper, the output of the nonlinear
process is recorded for a sequence of different waveforms.
Depending on the sequence of waveforms used, many different
techniques can be implemented. Indeed, variants of both
FROG [178–180] and SPIDER [160, 180, 181] have been
implemented using this approach.

For instance FROG can be implemented by programming,
using the shaper, a delayed replica sent to a nonlinear crystal
(χ(2)). Recording the spectrum as a function of the delay
gives an interferometric FROG (iFROG) trace. The classical
FROG trace can be extracted by Fourier processing [178] (see
figure 33(c)) or obtained directly using a calcite plate and
type II crystal to avoid interferences [180]. Figure 33(a) taken
from [178] shows the iFROG trace of a laser pulse passed
through 5 cm of fused silica and acquired using a 4f -line
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(a)

(b) (c) (d)

Figure 33. Taken from [178]. (a) iFROG measurements and (b)
reference FROG. (c) FROG trace retrieved from (a). (d) Extracted
phases from the FROG and iFROG traces of a laser pulse passed
through 5 cm of fused silica.

shaper. The oscillations are typical of interferometric traces.
A reference FROG trace has been measured in figure 33(b) for
comparison whereas figure 33(c) is the FROG trace extracted
from (a). Finally panel (d) shows the retrieved spectral phase
for both iFROG and FROG techniques as well as theory.

What is more, using a pulse shaper opens the door to new
possibilities that are not easily implemented using standard
optics. This is the case of MIIPS (multiphoton intrapulse
interference phase scan) [182–184] where the pulse shaper is
used to add various known phase profiles to the test pulse.
The output of the second-harmonic generation (SHG) is then
spectrally resolved and recorded as a function of the added
phase profiles.

It has been shown [184] that in the SHG spectra, a local
maximum is observed when the total spectral phase is locally
minimized. This occurs when its second derivative is equal to
zero [184]:

ϕ
(2)
tot (ωm) = ϕ(2)(ωm) + f (2)(ωm) = 0 (55)

where f (ω) is the added phase function and ωm is the
frequency corresponding to the maximum of the SHG
spectrum. As f (2)(ω) is a known function one can
determine ϕ(2)(ωm). By varying the applied function f (ω),
one can retrieve ϕ(2)(ω) across the whole spectrum and
then reconstruct ϕ(ω) modulo a linear term. Figure 34
illustrates this principle using sets of quadratic phases as
functions f (ω).

The solid line in panel (a) represents the unknown ϕ(2)(ω)

which is mapped using an horizontal grid of function f (2)

corresponding here to different amount of linear chirp. The
intersections of the solid line with the horizontal lines fulfil
equation (55). In (b) the SHG spectrum is recorded and plotted
as a function of ω for each function f (ω): each maximum
corresponds to an intersection in (a) where the unknown phase
is properly compensated for and thus measured. Plotting SHG
intensity as a function of both chirp and frequency directly
reveals the unknown phase ϕ(2) as shown in (c). Finally the
number of functions f (ω) generable by a pulse shaper is vast

(a)

(b)

(c)

Figure 34. Taken from [185]. Principle of the MIIPS method.
(a) The unknown φ′′(ω) function is probed using a set of reference
linear chirps represented by the horizontal grid. (b) The maximum
SHG intensity for every frequency indicates that the corresponding
reference chirp value compensates the unknown function at the
position of the maximum. (c) A two-dimensional contour plot
mapping the intensity of the SHG as a function of chirp and
frequency directly reveals the unknown φ′′(ω).

and leaves the choice for appropriate set of functions, like
sinusoidal phases [182].

One major advantage of all the shaper-assisted
characterization techniques is that the same set-up can be
used to achieve several quasi-independent measurements of the
same pulse, by simply changing the sequence of the waveforms
used in order to implement different characterization
techniques [178–180]. This constitutes a unique advantage
of shaper-assisted characterization techniques over traditional
ones where each technique relies on a dedicated experimental
set-up.

One last advantage is that the resulting set-up is simple and
straightforward as most of the complexity as been shifted to the
pulse shaper and its programmed waveform. In particular, such
a set-up does not involve any beam splitting or recombining
and can thus be easily aligned and is compatible with in situ
measurements.

Shaper-assisted characterization techniques are thus
particularly interesting whenever a pulse shaper is available.
Indeed, any pulse shaper may suffice (indeed, both AOPDF
and 4f pulse shapers have been successfully used) and the
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overhead for turning it into a versatile characterization set-
up is close to zero. However, theses techniques should be
used wisely. Indeed, most of the implementations require
a perfectly calibrated pulse shaper, used within its range of
validity. Moreover various measurements made with the same
pulse shaper are not truly independent and cannot fully replace
an independent cross-check.

6. General conclusion

In this tutorial, we have tried to give an overview of some
of the most widespread techniques in ultrashort pulse shaping
and characterization. This tutorial is by no means a complete
review of but an introduction to two fast evolving fields of
research. For any technique presented here, interested readers
can find more details and in-depth discussion in the references
provided. As a general conclusion, we would like to give one
last piece of advice for both shaping and characterization. In
both cases, it is crucial to keep in mind the range of validity,
or the range of usage, out of which the result is not well
determined. This piece of advice sounds elementary, but as
shapers and characterization techniques tend to grow more
complex and more subtle, it is not always straightforward
to fully apprehend their limits. This is particularly true for
shaper-assisted characterization techniques as one should stay
within both the range of validity of the technique implemented
and within the range of abilities of the shaper used.
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[120] Präkelt A, Wollenhaupt M, Assion A, Horn C,
Sarpe-Tudoran C, Winter M and Baumert T 2003
Compact, robust and flexible setup for femtosecond pulse
shaping Rev. Sci. Instrum. 74 4950

[121] Stobrawa G, Hacker M, Feurer T, Zeidler D, Motzkus M
and Reichel F 2001 A new high-resolution femtosecond
pulse shaper Appl. Phys. B 72 627–30

[122] Binhammer T, Rittweger E, Ell R, Kartner F X and
Morgner U 2005 Prism-based pulse shaper for octave
spanning spectra IEEE J. Quantum Electron. 41 1552–7

[123] Xu L, Nakagawa N, Morita R, Shigekawa H and
Yamashita M 2000 Programmable chirp compensation for
6-fs pulse generation with a prism-pair-formed pulse
shaper IEEE J. Quantum Electron. 36 893–9

[124] Selle R, Nuernberger P, Langhojer F, Dimler F, Fechner S,
Gerber G and Brixner T 2008 Generation of polarization-
shaped ultraviolet femtosecond pulses Opt. Lett.
33 803–5

[125] Witte T, Zeidler D, Proch D, Kompa K L and Motzkus M
2002 Programmable amplitude and phase-modulated
femtosecond laser pulses in the mid-infrared Opt. Lett.
27 131–3

[126] Tan H-S and Warren W 2003 Mid infrared pulse shaping by
optical parametric amplification and its application to
optical free induction decay measurement Opt. Express
11 1021–8

[127] **Dudley J M, Walmsley I A and Trebino R 2008
Measurement of ultrashort electromagnetic pulses J. Opt.
Soc. Am. B 25 MU1–2

[128] Sala K, Kenney-Wallace G and Hall G 1980 Cw
autocorrelation measurements of picosecond laser pulses
IEEE J. Quantum Electron. 16 990–6

[129] Diels J-C M, Fontaine J J, McMichael Ian C and Simoni F
1985 Control and measurement of ultrashort pulse shapes
(in amplitude and phase) with femtosecond accuracy Appl.
Opt. 24 1270–82

[130] Monmayrant A, Chatel B and Girard B 2006 Real time
quantum state holography using coherent transients Opt.
Commun. 264 256

[131] Goulielmakis E et al 2004 Direct measurement of light waves
Science 305 1267–9

[132] Froehly C, Lacourt A and Vienot J C 1973 Notions de
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