

Status and plans for Pb(W)-LYSO Shashlik Simulations (DESY Workshop and Beyond)

Alexander Ledovskoy

University of Virginia, USA

Forward Calorimeter Task Force Meeting May 2, 2013

This is an attempt to summarize Shashlik simulations for two options Pb-LYSO (4 cm + 2 cm) and W-LYSO (2.5 cm + 2 cm)

- Current understanding
- Work of many people. You may not recognize your plots/results but it is there. It is used to make these plots or cross check these results.
- First goal is to have parameterized performance ready by DESY
- Second goal is to have working and validated configuration for FastSim by DESY
- Time scale for results

Energy Resolution

- Leakage
- Sampling
- Photo-Statistics
- Noise
- Constant

Energy Leakage

Longitudinal leakage

- depends on total length
- same for PbWO₄, Pb-LYSO, W-LYSO (~ 25X₀)

Transverse leakage

- depends on clustering algo
- depends on correction algo (MVA)
- assumed zero for now (best case scenario)

Non-Gaussian

• described by $\sigma_{\rm eff}$ (68% interval)

CMS

Energy dependence of Leakage

Left: Longitudinal shower profile in Pb-LYSO Right: Energy deposited in Pb-LYSO

Energy Leakage Parameterization

Grindhammer and Peters parameterize longitudinal EM shower profiles

$$\langle \frac{1}{E} \frac{dE(t)}{dt} \rangle = f(t) = \frac{(\beta t)^{\alpha - 1} \beta exp(-\beta t)}{\Gamma(\alpha)}$$

Good description of Geant4 simulation with additional 0.24% resolution term. Leakage resolution in %

$$\frac{\sigma_E}{E} = f \oplus 0.24\%$$

$$f = p_0 + p_1 \cdot lnE + p_2 \cdot (lnE)^2 + p_3 \cdot (lnE)^3$$
$$p_0 = 0.101349$$
$$p_1 = -0.0621358$$
$$p_2 = 0.0176115$$
$$p_3 = 7.87208e - 04$$

MIP Sampling Fraction

Sampling fraction

$$f_{mip} = \frac{E_{scint}}{E_{abs} + E_{scint}}$$

Use muons Not all muons are MIP! Apply *E* < 300 MeV

MIP Sampling fraction does not depend on energy of muons

	10 GeV	320 GeV
Pb-LYSO	0.268	0.264
W-LYSO	0.259	0.257

Electron Sampling Fraction

Sampling fraction

$$f_e = \frac{E_{scint}}{E_{abs} + E_{scint}}$$

Very slight dependence on energy

	f_e
Pb-LYSO	0.228
W-LYSO	0.226

e/mip

	f_e/f_{mip}
Pb-LYSO	0.857
W-LYSO	0.876

Sampling Resolution for Electrons

Sampling fraction

$$f_e = \frac{E_{scint}}{E_{abs} + E_{scint}}$$

Sampling resolution

 $\frac{\sigma_f}{\langle f \rangle}$

- Gaussian distributions of *f*
- Perfect $1/\sqrt{E}$
- Both options (Pb and W) have almost identical sampling by construction

Photo Statistics (LY)

We have Renyuan's measurements that include:

- LYSO tile $2.5 \times 2.5 \text{ cm}^2$
- Four WLS fibers of 40 cm long
- Photo-Detetor is PMT with $\sim 10\%~\text{QE}$

This is very realistic and conservative setup. The direct measurement of $LO_{test} = \sim 20$ p.e. per MeV of deposited energy in LYSO

Assuming

- Final choice of fibers will provide collection as good as WLS
- Final choice of photo-detector will provide QE as good as PMT

... the expected light output is

$$LO = LO_{test} \times f_e = 20 \ p.e. \times 0.227 = 4.5 \ p.e./MeV$$

Pb-LYSO (W-LYSO) Light Output of 4.5 p.e. per MeV of incident electron results in photo-statistic term of energy resolution

$$\frac{\sigma_E}{E} = \frac{1.5\%}{\sqrt{E}}$$

EE undamaged as measured in TestBeam has stochastic term for energy resolution

$$\frac{\sigma_E}{E} = \frac{5.4\%}{\sqrt{E}}$$

Expected Light Output for Pb-LYSO (W-LYSO) is $\times 13$ higher than PbWO₄ EE before radiation damage. This has been achieved already.

Birks law: Do we need to apply it for PbWO₄ and LYSO?

Noise (choice of Photo Detector and Front End)

We don't have direct measurements for the Strawman option We don't know what are the options yet

We can use realistic scenario

- Photo-detector is VPT with photo-cathode similar to PMT in Renyuan's tests
- VPTs are the same as in EE in any other aspect
- Front End is identical to current EE
- Performance is very well known!

Single channel noise in EE is ~140 MeV. Using stochastic term of 5.4%/ \sqrt{E} one can express 140 MeV = 48 p.e. Single channel noise in Strawman 48 p.e / 4.5 p.e/MeV = 10.7 MeV (×13 lower than EE!)

Assume one needs 9 channels (3×3) to reconstruct EM shower, noise term in energy resolution

$$\frac{\sigma_E}{E} = \frac{0.032 \ GeV}{E}$$

Can we see muons?

- MIP is ${\sim}250~\text{MeV}$
- Sampling fraction $f_{mip} = 0.262$ (average)
- MIP in p.e = 250 MeV \times 0.262 \times 20 p.e/MeV = 1310 p.e
- Single channel noise = 48 p.e.
- MIP is ×27 larger than noise

Yes, we can see muons clearly!

Total Energy Resolution

- Similar values for Pb-LYSO and W-LYSO
- Dominant terms: sampling and leakage

What's next? Additional terms due to light collection non-uniformity (longitudinal and transverse)

- Can estimate it with Litrani/Geant4
- If effect is large, it can be mitigated by modifying the configuration
- Should be kept as low as possible
- Catch: what is possible can be determined by R&D only!
- For now, assume ZERO. Proceed with Litrani/Geant4

For Standalone:

- Photo-Statistics: 20 pe/MeV in LYSO
- Noise: 48 p.e. per channel

Radiation Damage in Shashlik

Degradation of efficiency for light collection can be simulated with Litrani.

Assumptions under current scenario

- Similar η dependence of dose, hadron fluence as in current EE
- Similar VPT degradation
- \times 5 rad-harder than PbWO₄
- Evolution of Photo-Statistics
- Evolution of Noise
- Sampling and Leakage stay the same

Not known:

- EM damage
- Transport (fiber) damage

Plans for Radiation Damage in Shashlik

Within about 1 week

- Model for Standalone
- Evolution of EM amplitude degradation vs η vs $\int Ldt$
- Compare EE and Shashlik EM resolutions vs $\int Ldt$
- Compare EE and Shashlik $H \rightarrow \gamma \gamma$ resolutions vs $\int Ldt$

Shashlik in FastSim

- Release
- Configs
- Validation

General status of Shashlik in FastSim

- Default CMSSW 61X has it
- Prepared config files for Pb-LYSO and W-LYSO based on G. Grindhammer and S. Peters "The Parameterized Simulation of Electromagnetic Showers in Homogeneous and Sampling Calorimeters" [™]

Effective values

	Pb-LYSO	W-LYSO
A	189.46	172.21
Z	75.44	69.55
Density [g/cm ³]	9.99	13.94
Radiation Length [g/cm ²]	6.80	7.12
Molière Radius [cm]	1.75	1.08
Critical Energy [MeV]	7.99	8.51
Sampling Frequency (FS)	1.13	1.14
ê	0.84	0.88

Validation of Longitudinal Shower Shape

FastSim vs Geant4 for shower shapes for electrons with E=40 GeV

Tuning of effective radiation length

	X_0 [cm]
Pb-LYSO	0.73
W-LYSO	0.57

Validation of Transverse Shower Shape

FastSim vs Geant4 for shower shapes for electrons with E=40 GeV

Tuning of effective Molière Radius

	<i>R_M</i> [cm]
Pb-LYSO	2.10
W-LYSO	1.51

Within about 1 week

• Validate shower shapes for low and high energy of electrons

Within about 2 weeks

- Validate sampling, photo-statistics and noise
- Total Resolution should agree between Geant4 and FastSim

Longer time scale

• Implement radiation damage in FastSim 61X for EE (PbWO₄) and Shashlik