# Tests of LYSO crystals for use in the electromagnetic calorimeters

A.M.Artikov, V.Y.Baranov, Yu.A.Budagov, <u>Yu.I.Davydov</u>, V.V.Glagolev, A.V.Simonenko, A.N.Shalyugin, V.V.Tereschenko, Z.U.Usubov

> JINR, Dubna K.Afanasiev, M.A.Batouritsky, I.Emel'yanchik, V.Shevtsov NC PHEP BSU, Minsk

> > ESMART-2012 Dubna

## **Crystal calorimeters in the past and future**

| <ul> <li>Crystal Ball, SPEAR, SLAC</li> </ul>           | NaI(Tl) |
|---------------------------------------------------------|---------|
| <ul> <li>SND, VEPP-2M, VEPP-2000 Novosibirsk</li> </ul> | NaI(Tl) |
| <ul> <li>L3, LEP, CERN</li> </ul>                       | BGO     |
| • KTeV, FNAL                                            | CsI     |
| CLEO c, CESR, Cornell                                   | CsI(Tl) |
| <ul> <li>BABAR PEP II SLAC</li> </ul>                   | CsI(Tl) |
| <ul> <li>BELLE KEK B KEK</li> </ul>                     | CsI(Tl) |
| CMS, LHC, CERN                                          | PWO     |
| • PANDA, FAIR                                           | PWO-II  |
| • Mu2e, FNAL                                            | LYSO    |

## **Properties of Crystal Scintillators**

| Crystal                                     | Nal(TI) | CsI(TI) | BaF <sub>2</sub> | BGO  | PbWO₄      | LSO(Ce) | LYSO  | GSO(Ce) |
|---------------------------------------------|---------|---------|------------------|------|------------|---------|-------|---------|
| Density (g/cm <sup>3</sup> )                | 3.67    | 4.51    | 4.89             | 7.13 | 8.3        | 7.40    | 7.1   | 6.71    |
| Melting Point (°C)                          | 651     | 621     | 1280             | 1050 | 1123       | 2050    | 2050  | 1950    |
| Radiation Length<br>(cm)                    | 2.59    | 1.85    | 2.06             | 1.12 | 0.9        | 1.14    | 1.2   | 1.37    |
| Molière Radius (cm)                         | 4.8     | 3.5     | 3.4              | 2.3  | 2.0        | 2.3     |       | 2.37    |
| Interaction Length<br>(cm)                  | 41.4    | 37.0    | 29.9             | 21.8 | 18         | 21      |       | 22      |
| Refractive Index <sup>a</sup>               | 1.85    | 1.79    | 1.50             | 2.15 | 2.2        | 1.82    | 1.81  | 1.85    |
| Hygroscopicity                              | Yes     | Slight  | No               | No   | No         | No      | No    | No      |
| Luminescence <sup>b</sup> (nm)<br>(at peak) | 410     | 560     | 300<br>220       | 480  | 560<br>420 | 420     | 420   | 440     |
| Decay Time <sup>ь</sup> (ns)                | 230     | 1300    | 630<br>0.9       | 300  | 50<br>10   | 40      | 40-45 | 60      |
| Light Yield <sup>b,c</sup> (%)              | 100     | 45      | 21<br>2.7        | 9    | 0.1<br>0.6 | 75      | 75    | 30      |
| d(LY)/dT <sup>b</sup> (%/ °C)               | ~0      | 0.3     | -2<br>~0         | -1.6 | -1.9       | ?       |       | ?       |
| Volume Price (\$/cm <sup>3</sup> )          | 1 to 2  | 2       | 2.5              | 7    | 2.5        | -       |       | -       |

## **Mu2e Spectrometer**



## Stopped Muon Backgrounds to $\mu$ -N $\rightarrow$ e-N





**Mu2e Detector** 

#### $B_z=1.0$ T uniform field in Tracker + ECal



## **Electromagnetic Calorimeter**

- 12 X 44 LYSO crystals of  $3 \times 3 \times 11$  cm<sup>3</sup> for each vane
- σ(E) ≈ 5 MeV at 105 MeV.
- Main job is to trigger on interesting tracks.
- Spatial match of extrapolated track will help reject badly mis-reconstructed tracks.
- Most tracks from DIO curl inside.

Two discs are separated by ~1/2 "wavelength"

## LYSO intrinsic radioactivity







## <sup>22</sup>Na spectrum: self triggering



511 keV:  $\sigma/E = 5.75\%$ 1275 keV:  $\sigma/E = 3.7\%$ 

# <sup>137</sup>Cs spectrum



## LYSO irradiation with <sup>60</sup> Co γ-source



#### **Spectrum from cosmic muons**



## Linearity of the energy response and resolution



## LYSO longitudinal light response uniformity



- Short runs to measure LRU
- Distances between source and detectors are 8 cm
- Hard to make any conclusions...

## LYSO light output measurement



- ADC gate width varied from 40 ns to 500 ns
- <sup>60</sup>Co peaks positions measured for each gate width



A=A<sub>0</sub> {1- exp( $(t_0 - t)/\tau$ )}

## **Tests of 1x1x1 cm<sup>3</sup> LYSO crystal** *Preliminary results*

- Test are done with Hamamatsu APD S8664-1010
- Charge sensitive preamp has an integrating time about of 1  $\mu$ s



Crystal intrinsic rate

A lot of 202 and 307 keV gammas escape crystal due to its small size

## 1x1x1 cm<sup>3</sup> LYSO crystal irradiation with <sup>22</sup>Na, <sup>137</sup>Cs, <sup>60</sup>Co



ADC ch

900

800

56.09 / 47

 $\textbf{55.29} \pm \textbf{1.51}$ 

 $\textbf{584.2} \pm \textbf{1.4}$ 

 $\textbf{21.93} \pm \textbf{1.37}$ 

## 1x1x1 cm<sup>3</sup> LYSO crystal resolution and linearity



## **Conclusions and future plans**

- Test measurements of the Saint-Gobain LYSO crystal 30x30x130 mm<sup>3</sup> have been done employing the PMT EMI9813. A reasonable resolution achieved by excitation of crystal with gammas in the range 500-1330 keV.
- Preliminary test results of 10x10x10 mm<sup>3</sup> LYSO crystal with Hamamatsu APD S8664-1010 look very promising.

#### Plans:

- □ Tests of Saint-Gobain LYSO crystal:
- with Hamamatsu APDs S8664-1010.
- Study of light collection uniformity due to different types of wrapping.
- Tests with Geiger mode APDs (SiPM/MAPD/MPPC)
- □ Tests of crystals from ISMA, Kharkov:
- Optical parameters
- Resolution, light response uniformity, etc.

#### This work was supported in part by the BRFFI-JINR grant