



# CMS Forward ECAL Upgrade LYSO Shashlik Design and Matrix

## Harvey B Newman California Institute of Technology February 19, 2013

CMS Forward Calorimetry Subgroup Upgrade Meeting at CERN



**Design Couples:** Cell Size (R<sub>M</sub>), Depth (X<sub>0</sub>), Sampling Fraction and Cost

Issues: Radiation hardness of (1) photodetector (2) WLS fiber



## LYSO-Pb Shashlik Cell



#### Presented in the 8/30/12 forward calorimetry taskforce meeting





## **LYSO Shashlik Cell Design**



| Presented I            | ov R.Y. Zhu 12/12/13          | инсь                      | Plan-1             | Plan-2             |  |  |
|------------------------|-------------------------------|---------------------------|--------------------|--------------------|--|--|
|                        | ,                             | Lead (Pb)                 | Lead (Pb)          | Tungsten (W)       |  |  |
| Absorber               | Density (g/cm3)               | 11.4                      | 11.4               | 19.3               |  |  |
|                        | Radiation Length (cm)         | 0.56                      | 0.56               | 0.35               |  |  |
|                        | Moliere Radius (cm)           | 1.60                      | 1.60               | 0.93               |  |  |
|                        | dE/dX (MeV/cm)                | 12.74                     | 12.74              | 22.1               |  |  |
|                        | Thickness (mm)                | 2                         | 4                  | 2.5                |  |  |
|                        | Plates number                 | 66                        | 28                 | 28                 |  |  |
|                        |                               | BASF-165 Polystyrene (Sc) | LYSO               | LYSO               |  |  |
|                        | Density (g/cm3)               | 1.06                      | 7.4                | 7.4                |  |  |
|                        | Light Yield (photons/MeV)     | 5200                      | 20000              | 20000              |  |  |
| Crintillator           | Radiation length (cm)         | 41.31                     | 1.14               | 1.14               |  |  |
| Schulator              | Moliere Radius (cm)           | 9.59                      | 2.07               | 2.07               |  |  |
|                        | dE/dX (MeV/cm)                | 2.05                      | 9.55               | 9.55               |  |  |
|                        | Plate Thickness(mm)           | 4                         | 2                  | 2                  |  |  |
|                        | Plates number                 | 67                        | 29                 | 29                 |  |  |
|                        |                               | Kurarray Y-11(250)        | Kurarray Y-11(250) | Kurarray Y-11(250) |  |  |
| WLS Fiber              | Diameter (mm)                 | 1.2                       | 1.2                | 1.2                |  |  |
|                        | Number /Cell                  | 16                        | 4                  | 4                  |  |  |
|                        | Total Depth (X0)              | 24.22                     | 25.09              | 25.09              |  |  |
|                        | Sampling Fraction (MIPs)      | 0.25                      | 0.28               | 0.26               |  |  |
|                        | Total Physical Length (cm)    | 40                        | 17                 | 12.8               |  |  |
|                        | Total Sc Length (cm)          | 26.8                      | 5.8                | 5.8                |  |  |
|                        | Absorber Weight Ratio         | 0.84                      | 0.75               | 0.76               |  |  |
|                        | Scintillator Weight Ratio     | 0.16                      | 0.25               | 0.24               |  |  |
| Cell Properties        | Average Density (g/cm3)       | 4.47                      | 10.04              | 13.91              |  |  |
|                        | Average Radiation Length (cm) | 1.65                      | 0.68               | 0.51               |  |  |
|                        | Average Moliere Radius (cm)   | 3.6                       | 1.7                | 1.2                |  |  |
|                        | Transverse Dimension (cm)     | 4.1                       | 1.9                | 1.4                |  |  |
|                        | Sc-depth/Total-depth in X0    | 0.0268                    | 0.2028             | 0.2028             |  |  |
|                        | WLS Fiber Density (N/cm2)     | 0.97                      | 1.06               | 2.07               |  |  |
| MIPs Energy Deposition | Sc plates (MeV)               | 54.94                     | 55.39              | 55.39              |  |  |
| Light Yield using MIPs | Photon Electrons/GeV          | 3077                      | 11932              | 11932              |  |  |
| Signal of MIPs         | Photon Electrons / MIP        | 169                       | 661                | 661                |  |  |
| Energy Resolution      | Stochastic term "a" (%)*      | 82                        | 5.4                | 5.6                |  |  |

\* Assuming the same relation between stochastic term "a" and (Sc thickness/Sampling Fraction)<sup>1/2</sup> for LYSO crystal and plastic scintillator based Shashlik calorimeters.



## Shashlik ECAL Design Key Parameters



| 4 Readout Fibers<br>and 1 Monitoring<br>Fiber Per Cell | Pb (4mm) +<br>LYSO (2mm)    | W (2.5mm) +<br>LYSO (2mm)   |  |  |
|--------------------------------------------------------|-----------------------------|-----------------------------|--|--|
| Plates                                                 | 28 Pb + 29 LYSO             | 28 W + 29 LYSO              |  |  |
| Total No. of X0                                        | 25.1                        | 25.1                        |  |  |
| Length                                                 | 170 mm                      | 128 mm                      |  |  |
| Transverse Size                                        | 19 mm (1.1 R <sub>м</sub> ) | 14 mm (1.1 R <sub>м</sub> ) |  |  |
| Cells (2 Endcaps)                                      | ~36k                        | ~65k Use Super              |  |  |
| Crystal Volume (m <sup>3</sup> )                       | ~0.38                       | ~0.38 towers                |  |  |
| Avg. R <sub>M</sub>                                    | 17 mm                       | 12 mm                       |  |  |
| Avg. X0                                                | 6.8 mm                      | 5.1 mm                      |  |  |
| WLS Fiber Density/cm <sup>2</sup>                      | 1.06                        | 2.07                        |  |  |
| P.E./GeV                                               | 11.9k                       | 11.9k                       |  |  |
| P.E./MIP                                               | 660                         | 660                         |  |  |
| Stocastic Term                                         | 5.4%                        | 5.6%                        |  |  |

## LHCb ECAL: 3.3k Modules



CMS Concept: More Compact Thin Scintillator + Pb or W Plates Solid State GaAs readout

## LHCb Pb/Sc Shashlik ECAL Construction





## **Three LYSO Plates with Holes**



1 14 15 10 17 18 19 1 12 13 14 16 16 17



## **Two Measurement Setups**



CAMAC Crate qvt MCA <u>Cs</u><sup>137</sup> LeCroy 3001 PC Gate generator LeCroy 2323A Discriminator Na<sup>22</sup> BaF<sub>2</sub> PMT H.V. Supply PMT (R2059) H.V. 1) LYSO plates with Tyvek wrapping are Disc. (LeCroy 821) H.V. readout directly by a Gate (LeCroy 222) R1306 PMT using a Cs-137 y-ray source. MCA (LeCroy 3001)

2) LYSO plates with Tyvek wrapping are readout with four Y11 WLS fibers of 40 cm long and a R2059 PMT using a Na-22 γ-ray source and coincidence.





## PHS of 3 mm LYSO Plate



#### LYSO 25 × 25 × 3 mm<sup>3</sup>





γ-ray peaks are clearly visible



## **Light Collection Efficiencies**



| Samples                              | 5 mm LYSO | 3 mm LYSO | 1.5 mm LYSO | LHCb cell* |  |
|--------------------------------------|-----------|-----------|-------------|------------|--|
| LO <sub>1</sub> (p.e. /MeV)          | 3760      | 3970      | 4370        |            |  |
| LY <sub>1</sub> (Photons /MeV)       | 29150     | 30780     | 33880       | 5200       |  |
| LO <sub>2</sub> (p.e./MeV)           | 20.7      | 24.3      | 17.9        | 3.1        |  |
| LY <sub>2</sub> (Photons /MeV)       | 154       | 179       | 132         |            |  |
| MIP (p.e./55 MeV)                    | 1140      | 1340      | 990         | 169        |  |
| LO <sub>2</sub> /LO <sub>1</sub> (%) | 0.55      | 0.61      | 0.41        |            |  |
| LO <sub>2</sub> /LY <sub>1</sub> (%) | 0.07      | 0.08      | 0.05        | 0.06       |  |

\* 2009 J. Phys.: Conf. Ser. 160 012047.

Measured light collection efficiencies consist with LHCb data



## Shashlik ECAL: References



- Irina Machikhiliyan for the LHCb calorimeter group, "The LHCb electromagnetic calorimeter", XIII International Conference on Calorimetry in High Energy Physics (Calor2008).
- 2) A. Bamberger et al., "The ZEUS forward plug calorimeter with lead-scintillator plates and WLS fiber readout", NIM A450 (2000), p 235-252.
- 3) C.S. Atoyan et al., "Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout", NIM A320 (1992), p144-154.
- 4) L. labarga and E. Ros, "Mont Carlo study of the light yield, uniformity and energy resolution of electromagnetic calorimeter with a fiber readout system", NIM A249 (1986), p228-234.



#### Forward ECAL Shashlik Matrix Step by Step (1)

- 1. Define the scope of the testbeam matrix [Or Matrices; more later]
  - **5 X 5 Cells: Rectangular geometry all tiles are the same size.**
  - Normal Y11 fiber (capillaries later)
  - Photodevices: SiPMs (GaAs or GaInP later)
  - **Keep in mind a Series of TB matrices; with increasing realism**
- 2. Choose plate layout baseline: for example Pb(4mm) + LYSO (2mm)
  - □ W (2.5mm) + LYSO (2mm) may be done in a second TB round
  - **Or Swap the two designs with the W design going first**
- 3. Define Cell design and assembly sequence
  - Mechanical design Supertowers ?; Compression straps; fixtures. Provision for mounting photodevices and readout
  - Define tolerances [e.g. plate tolerances done & sent for quotes]
  - **Define Assembly procedure**
  - **Define Tolerance Test after assembly**
- 4. Cell Element Acceptance and Test Procedures
  - □ LYSO tiles: quality control; lab test
  - □ SiPMs: Acceptance and test



### Forward ECAL Shashlik Matrix Step by Step (2)

- 4. Define Laboratory Cell-Test Procedures
  - CR Tests: Test Stand
  - **Sources**
- 5. Define and commission Matrix Test in lab: stand, CR, sources
- 6. Element Acquisition, Preparation and Costs
  - **Cost of Pb or W Tiles** 
    - Edges pre-machined or machined in-house
    - Delivered predrilled or drilled in house
  - LYSO Tiles
  - Y11 Fibers
  - □ SiPMs
- 7. Purchasing
- 8. Construction
  - □ First Single Cell Followed by Complete Test Sequence
  - Define Production cell assembly and test procedure
- 9. Matrix Assembly and Test

#### Tungsten Plates in Stock "\$ 20-60 Per Kg"

tungsten plate in stock



#### **Brief Description**

1.Materials: Pure Tungsten 99.95% Min 2.Size: 500 X 100X 0.5-100mm 3.Surface:Electropolishing

4.Standard: ASTMB760.

# Need to understand the cost of many finished small tiles with holes



#### LSO/LYSO Crystal Cost

#### Now we need a series of small tiles



Lu<sub>2</sub>O<sub>3</sub> price fluctuates up in 2011 and down in 2012, showing market speculation on the rare earth control policy of the Chinese government.





Assuming  $Lu_2O_3$  at \$4000/kg and 33% yield the cost is about \$18/cc. Quotations received at \$22-25/cc.

> NOTE: We need to know the price for finished small tiles: 29 X 25 = 725 plus spares are required. Do we need to cut and polish our own tiles ?

# LYSO, Pb and W Plates: with defined tolerances; sent out for quotes

#### LYSO Plate, Pb Design

#### **Pb** Plate





## Conclusions

- We need a bottoms-up cost and schedule before scheduling a beam test of a 5 X 5 cell matrix.
- We need to confirm that we have the funds and level of effort required
- Shall we consider bringing a single cell or a 3 X 3 submatrix to the test beam first





# **Backup Slides Follow**

CMS Forward Calorimetry Subgroup Upgrade Meeting at CERN

## Remarks

- LYSO is a radiation hard material with high speed and light output. It has been chosen as the baseline for these candidate design sketches for this reason.
- Potential Alternatives: So far not shown to be practical
  - **Ceramics:** not radiation hard so far
  - □ YSO: Not a cost advantage: Perhaps 50% lower material cost, but larger volume is required, and there are no mass production sources
- In addition to Higgs candidate mass resolution, good EM resolution and granularity are needed for:
  - □ Identification and background suppression, as well as the measurement of EM ( $e, \gamma$ ) objects
  - □ Jet resolution and MET tail suppression (w/track or PF jets)
- We will progressively need better EE performance; also for X\_H decay modes and other new physics searches or study.
- With the present ECAL Endcap, we could have a problem with jet measurements already by LS2 (2018):

$$\Box$$
  $\eta$  = 2.7 – 3.0 could be ~lost by LS2

 $\Box$   $\eta$  = 2.45 – 3.0 could be ~lost by LS3

#### Model Predictions for EE Light Yield for 50 GeV Electrons. Simulation by Ledovskoy



NB: 1.5-2X for neutron damage (above fission threshold) + Noise Term Still to be Added

Basic Question of EE Replacement, and When, Remains

## **Alternate Planning Considerations**

- Serious consideration should be give to the following alternative plan, <u>If Necessary:</u>
  - Remove ES and replace it by a compact ECAL insert, like the Shashlik (W+LYSO) design shown for example
  - Cover at least  $\eta$  = 2.45 3.0; possibly 2.0 3.0 if time permits
  - If jet measurements are verified to be severely impacted, as indicated so far, then we may need to do this even if the endcap is moved back a few centimeters; Else fit in the available space.
- Installing a "plug" in place of ES in LS2 will in any case be essential to understand the needs for LS3, if a full size forward ECAL insert cannot be done in time for LS2
- We need to proceed to system design considerations, and targeted R&D on specific items, starting now
- ☐ Further studies, to guide and help pin down the future plan and upgrade schedule, are crucial now.



## Higgs (Now X<sub>H</sub>) Analysis

We need to consider the "Higgs" Analysis Needs Note: present EE has ~no role in H  $\Rightarrow \gamma\gamma$ : Resol'n + MET Tail

□ Endcap ECAL performance resolution needs improvement

- □ Need to consider crystals, ES + VPT degradation over time
- Need to study this in more detail in the determination of the Higgs properties analysis, as well as SUSY
- X<sub>H</sub> BRs (WW, ZZ\*, γγ, ττ), spin, and other properties using larger acceptance (high R9) for higher resolution and ID is now important

**2015-2018**, as well as 2019-2021 (After LS2) will be crucial:

- We need to realistically evaluate the ECAL performance versus time, to frame the physics program for Phase 1 and Phase 2
- Apart from the ECAL performance in isolation, we need to have a realistic picture of the trigger, reconstruction and selection, in the presence of pileup at ~13 TeV, 25 nsec bunch spacing: for jets as well as photons and electrons.



## **Crystal R&D Result**

LSO/LYSO is a bright (200 times light of PWO) and fast (40 ns) crystal scintillator. It has been widely used in the medical industry. Its good mechanical characteristics allow it to be used in various forms for different calorimeter designs.

Supported by DOE ADR and US CMS Upgrade Effort the Caltech group has been investigating this material for HEP applications since 2005 [\*]. Findings:

- Its radiation hardness is excellent against γ–ray, neutrons and high energy protons (ETH data).
- **There is no recovery, so calibration is relatively easy.**
- As a result, total absorption LYSO ECAL is now baselined for both the Mu2e and SuperB experiments.

[\*] References: IEEE Trans. Nucl. Sci. NS-52 (2005) 3133-3140, Nucl. Instrum. Meth. A572 (2007) 218-224, IEEE Trans. Nucl. Sci. NS-54 (2007) 718-724, IEEE Trans. Nucl. Sci. NS-54 (2007) 1319-1326, IEEE Trans. Nucl. Sci. NS-55 (2008) 1759-1766 and IEEE Trans. Nucl. Sci. NS-55 (2008) 2425-2341, paper N69-8 @ NSS08, Dresden, paper N32-3, N32-4 and N32-5 @ NSS09, Orlando, paper N38-2 @ NSS10, Knoxville, and paper N29-6 @ NSS11, Valencia .

#### **LYSO Crystal Against Gamma-Rays**





## **Radiation Hard LYSO Plates**





## Summary of Fast Scintillation Crystals (Zhu)



|                                  | LSO/LYSO | BaF <sub>2</sub> | Csl        | CeF <sub>3</sub> | CeBr <sub>3</sub> | LaBr <sub>3</sub> | LaCl <sub>3</sub> | YSO  | GSO  |
|----------------------------------|----------|------------------|------------|------------------|-------------------|-------------------|-------------------|------|------|
| Density (g/cm <sup>3</sup> )     | 7.40     | 4.89             | 4.51       | 6.16             | 5.10              | 5.29              | 3.86              | 4.54 | 6.71 |
| Rad. Length (cm)                 | 1.14     | 2.03             | 1.86       | 1.70             | 1.96              | 1.88              | 2.81              | 3.04 | 1.38 |
| Molière Rad.<br>(cm)             | 2.07     | 3.10             | 3.57       | 2.41             | 2.97              | 2.85              | 3.71              | 2.87 | 2.23 |
| Interaction Length<br>(cm)       | 20.9     | 30.7             | 39.3       | 23.2             | 31.5              | 30.4              | 37.6              | 27.3 | 22.2 |
| Z value                          | 64.8     | 51.6             | 54.0       | 50.8             | 45.6              | 45.6              | 47.3              | 33.3 | 57.9 |
| dE/dX (MeV/cm)                   | 9.55     | 6.52             | 5.56       | 8.42             | 6.65              | 6.90              | 5.27              | 6.70 | 8.88 |
| Emission Peak <sup>a</sup> (nm)  | 420      | 300<br>220       | 420<br>310 | 340<br>300       | 371               | 356               | 335               | 420  | 430  |
| Refractive Index <sup>b</sup>    | 1.82     | 1.50             | 1.95       | 1.62             | 2.3               | 1.9               | 1.9               | 1.80 | 1.85 |
| Rel. Light Yield <sup>a ,c</sup> | 100      | 42<br>4.8        | 4.2<br>1.3 | 8.6              | 144               | 153               | 15<br>49          | 40   | 35   |
| Decay Time <sup>a</sup> (ns)     | 40       | 650<br>0.9       | 30<br>6    | 30               | 17                | 20                | 570<br>24         | 70   | 65   |
| d(LY)/dT <sup>d</sup> (%/°C )    | -0.2     | -1.9<br>0.1      | -1.4       | ~0               | -0.1              | 0.2               | 0.1               | -0.3 | -0.7 |

a. Top line: slow component, bottom line: fast component.

c. Relative light yield normalized to the light yield of LSO

b. At the wavelength of emission maximum.d. At room temperature (20°C)



## **Performance of Scintillator Plates**



### **Radiation Hardness of Ceramics**



## **Normalized EWLT: LYSO & Ceramic**

As expected LYSO is radiation hard: a few % @ 1 Mrad

Ceramics, on the other hand, seem not radiation hard

> Further Investigation is needed.



#### **Peformance of Pb/Sc Shashlik ECAL**

