Geant4 simulation

A. Apresyan

Setup

- Trying to estimate how effective will the setup with Henry device be
 - Simulate muon passage through the glass window
 - Estimate total photon yield and energy spectrum from Cerenkov
- Simulation is ran through Geant4

Schematic of the fast timing detector. A relativistic charged particle produces Cherenkov light in the window. This radiation is converted into electrons by a photocathode. The electrons produce a shower in the micro-channel plates (MCP), and the electrons are deposited on the segmented anode to be detected.

Setup

- Implemented the detector volume as:
 - Borosilicate glass of 20x20x0.38mm thickness, as Andrey clarified
 - Refractive index of 1.538 and Absorption length 4.1-5.5cm (as a function of photon energy)
 - Glass is immersed in Air
 - Surface is also implemented to have the reflections and scattering
 - PMTs are simulated as circles of radius 2mm with Al photocathode and Glass tubes
 - At the moment the efficiency of PMT is set as 100%, can be easily changed
- Implemented a cosmic muon simulator CRY
 - o <u>http://nuclear.llnl.gov/simulation/main.html</u>
 - data-based simulation of cosmic rays, standard package in many CR studies

Event displays

- To validate the setup, increased the thickness to 3.8cm
- Z axis points up

CALI

- The small circles at the bottom are the PMTs
- PMTs above a threshold are displayed as RED circles
- Exposure in this event display is 0.7 secs

Some plots

• All the following are with 20x20x0.38cm glass with 50 mins exposure

Some plots

In the following I set the optical properties to those in the Henry device, as pointed by Andrey Elagin

Wavelength λ (nm)	435.8	479.9	546.1	589.3	643.8	656.3
Index of Refraction n	1.48015	1.47676 (n _{F'})	1.47311 (n _e)	1.47133	1.46953 (n _{C'})	1.46916

CALIFO A N S ΤE TECHNO Y RNI 0 F LO G ті т

Some plots

- PMT threshold is now set at 1photon, can be changed
- "number of photons absorbed in PMT" means they were deposited in PMT sensitive volume, i.e. are detected

• Number of optical photons produced is larger than those that get to PMT, since some are absorbed.

PMT with 20% efficiency

• Now I change PMT to 20% efficiency

