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Principles

The principle of special relativity & the principle of the
constancy or invariance of the speed of light
• All reference frames in rectilinear, uniform and irrotational

motion, i.e. the so-called inertial reference frames shall
be completely equivalent in physics. No inertial frame shall
be distinguished from any other inertial frame by any
property.

• The speed of light in the vacuum has the same value in
each inertial frame, irrespective of the velocities of the light
source or the light receiver. it is a fundamental physics
constant c=299,792,458 m/s

• March challenge (4U): write an essay titled “if c = 45
km/h the world would look like this:” (you will need to
be quantitative)
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Lorentz transformations as rotations

• we have considered cases with IRF with axes parallel to
each other in relative motion to the x , x ′ direction.

• the corresponding Lorentz tranforamtion involves two
variables x and ct into x ′ and ct ′

• the transformation is linear and conserves the interval

s′2 = c2t ′2 − x ′2 = c2t2 − x2 = s2

• if instead of minus we had a plus sign we would say that
s = s′ is the distance of the corresponding point fromt he
origin.
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Lorentz transformations as rotations

• A transformation in a 2D space that involves both
coordinates and is lineae and conserves distances is
rotation

• so in fact as alluded so far

s′2 = c2t ′2 − x ′2 = c2t2 − x2 = s2

is a spacial kind of 2D “distance” and the Lorentz
tranformations are rotations in this space.
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Consider the Cartesian coordinate system x , y and the rotated
by θ x ′, y ′. Find the coordinates of P in the two systems.
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Lorentz transformations as rotations

x ′ = cos θx + sin θy

y ′ = − sin θx + cos θy

or in matrix form(
x ′

y ′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
No impressive analogy with Lorentz tranformations
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Lorentz transformations as rotations

express the sin and cos in terms of tangent of the same angle
(trigonometry please)(

x ′

y ′

)
=

1√
1 + tan2 θ

(
1 tan θ

− tan θ 1

)(
x
y

)
now set tan θ = v

c



Principles Rotations Logistics

Lorentz transformations as rotations

express the sin and cos in terms of tangent of the same angle
(trigonometry please)(

x ′

y ′

)
=

1√
1 + tan2 θ

(
1 tan θ

− tan θ 1

)(
x
y

)
now set tan θ = v

c



Principles Rotations Logistics

Lorentz transformations as rotations

express the sin and cos in terms of tangent of the same angle
(trigonometry please)(

x ′

y ′

)
=

1√
1 + tan2 θ

(
1 tan θ

− tan θ 1

)(
x
y

)
now set tan θ = v

c



Principles Rotations Logistics

Lorentz transformations as rotations

now set tan θ = v
c(

x ′

y ′

)
=

1√
1 + β2

(
1 β
−β 1

)(
x
y

)
now lets set y = ct so that we get the time coordinate and
change the order of the variables: instead of (x , ct) we will do
(ct , x).
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Lorentz transformations as rotations

instead of (x , ct) we will do (ct , x).(
ct ′

x ′

)
=

1√
1 + β2

(
1 −β
β 1

)(
ct
x

)
reminder

β =
v
c
, γ =

1√
1− β2

some similarity but major caveat the minus signs.
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Lorentz transformations as rotations

This is the Lorentz transformation in (ct ′, x ′) −→ (ct , x)(
ct ′

x ′

)
=

1√
1− β2

(
1 −β
−β 1

)(
ct
x

)
reminder

β =
v
c
, γ =

1√
1− β2

so what happened with the off-diagonal minuses?
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rotation with a funny sign

• the difference is that the transforamtion matrix is symetrical
for the Loretz transformation but antisymmetrical for the
Euclidean roatation

• if instead of ratating both axes in the same direction (tru
rotation), we rotate them in opposite direction : i.e rotate x
counterclockwise and ct clockwise: The resulting
coordinate system (ct ′, x ′ will be skewed rather than
rotated.

• from matehtical viewpoint the coordinate transformation
can be seen as a rotation with a funny sign (the sign
difference in non-diagonal elements of the transformation
matric will dissapear).
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one more minus sign difference

The difference of the other minus sign is because in the
Euclidean rotation

r2 = x2 + y2 = x ′2 + y ′2

as opposed to the Lorentz transformation that preserves

s′2 = c2t ′2 − x ′2 = c2t2 − x2 = s2
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Logistics

Prof. Spiropulu, http://www.hep.caltech.edu
Office 265 Lauritsen, x2471, x6676, x6667
Notes and other material/workbooks references etc will be
posted in the 05 Section twiki
https://twiki.hep.caltech.edu/twiki/bin/view/Main/Smaria
(starting next week)
A student twiki will be set there for you (and an account)
Dr. Dorian Kcira dkcira@caltech.edu is managing the twiki and
will be sending you info on the account
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Reference Frames and Coordinate systems
• Reference frame is usually (but not always) a physical

rather rigid object to which we refer our measurements and
observations (car train plane, spaceship, the earth, the
galaxy, even a cluster of galaxies etc)

• A Coordinate system is a way we specify a position by
assigning to it a set of numbers (Cartesian, spherical,
cylindrical etc); Geometrically thay can be represented as
a triad of unit vectors ~̂x , ~̂y , ~̂z. A point in space is specified
by the orthogonal projections of its position vector onto the
corresponding directions.

• There are infinite such triads we can devise. They are all
distinct and they can all be obtained from another by
appropriate rotations and/or reflections.

• A reference frame and a coordinate system are different
concept and specifically the former does not specify the
latter
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Newtonian space and time (from Principia)

• Absolute space in its own nature, without regard to
anything external, remains always similar and immovable

• Absolute time, and mathematical time, by itself and from its
own nature, flows equally without regard to anything
external and by another name it called duration
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