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The Phase-1I upgrades to the Large Hadron Collider will introduce a variety of new measurement
devices to the CMS, including the High-Granularity Calorimeter (HGCAL). The increase in lumi-
nosity from these upgrades will also have the undesired side effect of vastly increasing pileup to a
level at which the current machine learning vertex reconstruction (vertexing) algorithms cease to be
effective. This will necessitate the development of further vertexing algorithms. Using high precision
timing measurements from simulated events in the HGCAL, we design a vertex reconstruction algo-
rithm that requires only the spatiotemporal arrival coordinates to reconstruct the interaction vertex
of a collision with sub-millimeter resolution. We also analyse how particle energy and simulated
time smearing affect this resolution and we apply this algorithm to more realistic H — v sets. To
do this, we implement a set of filters to remove poorly-reconstructed events and introduce a new
algorithm capable of reconstructing interaction vertices given the pointing data and arrival data of
a single cluster. Progress on this work was ultimately hindered by extensive errors in the clustering
algorithms used the generation of the datasets; should these errors be resolved, further work would
include integration with tracker information and the application of these algorithms to high-pileup

scenarios and QCD jets.

I. INTRODUCTION

The recent upgrades to the Large Hadron Collider
(LHC) have doubled the collision energy of the acceler-
ator, increasing it from 8TeV to 13TeV, while proposed
Phase-II upgrades following the next shutdown will in-
crease the beam luminosity by an order of magnitude.!
A side effect of both of these changes is increasing pileup -
when multiple collisions happen sufficiently close enough
in space and time such that it is difficult to associate
the final particle states with the vertex from which they
emanate. This high pileup environment poses particular
challenges to distinguishing the two major production
mechanisms for the Higgs boson - gluon fusion and vec-
tor boson fusion (VBF). Separating the two production
mechanisms is of crucial importance for precisely under-
standing electro-weak symmetry breaking, among many
other topics.

A novel approach, the development of which is the em-
phasis of this project, uses the space and time coordinates
of arrival of the particles in the detector to reconstruct
the interaction vertex. With a timing measurement preci-
sion of approximately 100ps or better, as attained for the
first time by the Caltech CMS group?, one can exploit the
time of flight information to reconstruct the origin (in-
teraction vertex) of the particles and test the consistency
of the arrival time in the ECAL using a four-dimensional
triangulation method.

Initial studies using similar techniques have been previ-
ously carried out in 20123 and 2014*. We continue these
proof-of-concept studies with a new, cleaner implementa-
tion designed independently of these studies. We eventu-
ally extend this algorithm’s applicability to a larger and
more realistic data set, such as H — 7 and the forward
1 (pseudorapidity) and lower pp (transverse momentum)
regime relevant to VBF.

To implement this on these more complex sets, we also

study shower structure and evolution, specifically with
the aim of investigating the feasibility of single-cluster
vertexing algorithms and the efficiency of several general
event filters in improving reconstruction resolution.

II. TIME-BASED VERTEXING MODEL

The time-based vertexing (“tVertexing”) model is, at
its core, very simple. Consider a collision emitting two
particles. Let t; and ¢ be the recorded times of arrivals
of the particles at the recorded locations (z1,y1, 21) and
(22,2, 22), respectively, as shown in Figure 1.

Note that there are multiple possible metrics by which
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FIG. 1. Space and time arrival coordinates overlaid on a ren-
dering of a H — vy event. Green clusters represent recorded
hits and energy distributions in the ECAL (photon interac-
tions), while blue clusters represent HCAL interactions.



we can measure the arrival time and coordinates of a
particle in the detector. For the purposes of this study,
we use the numerical average of the spatiotemporal ar-
rival coordinates of all recorded hits (“rechits”), though
previous studies have found energy-weighting the numer-
ical average to improve performance®®, though this was
found to be problematic when applied to various simu-
lated datasets. For more on this, see Section VIIT A.

We can assume that the two particles travelled approx-
imately at ¢ from the vertex origin in a straight line, an
assumption which holds true for photons and high-energy
massive particles. We also assume the transverse diame-
ter of the beam is negligible (typically this is on the order
of a few micrometers). Euclidean geometry gives us that:
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Given this, we can simply solve for z to reconstruct
the vertex of the event. This, of course, will produce two
possible solutions, so we pick the one that better agrees
with the observed data by selecting the solution zy that
minimizes

¢ (tr—ta) — /o +yi + (21 — 20)?
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In tests on the 500GeV ~-gun set, this selects the more
accurate of the two vertices 99.95% of the time. The
remaining 0.05% of the time can be attributed to detector
uncertainty in events with theoretical solutions very close
to each other and the actual vertex.

A. Selection of Arrival Hits

For initial demonstration purposes of this algorithm in
no-pileup (0PU) events, we use the arrival coordinates of
the most energetic cluster in the most energetic region
of interest. For photons, the initial test candidates, the
energy tends to be clustered tightly in one main cluster,
with a few smaller outlying clusters representing possible
premature interactions in the tracker.

The “HGCROI-formatted” datasets used in this
project have recorded hits that were clustered using the
Pandora clustering algorithm® (this was found to be
problematic eventually, as discussed in Section VIIIB).
The clusters have centroid properties (among much other
information) which can be used in the tVertexing algo-
rithm. However, using the flat-averaged mean of x,y, z
and t from the rechits in the selected cluster was found to
improve the resolution by roughly an order of magnitude
on tests in various datasets. We initially attempted to
energy-weight the x,y, z coordinates of the arrival hits.
However, this also proved to worsen the overall accuracy

of the vertexing algorithm. It is likely that this is due
to a defect in the generation of the simulated events; see
Section VIIT A for more details.

In calculating the arrival coordinates of the cluster, we
select only the hits which have timing data to them (a
small minority of the hits, generally corresponding to the
more energetic ones) and that occur within a 3 x 3 cell
window on the z,y plane of the energy centroid for each
layer in the HGCAL. This helps ignore lower energy, less
relativistic resultant shower particles that could worsen
the arrival coordinate estimates of the cluster.

III. IMPLEMENTATION ON ~+-GUN DATASET

The first datasets we checked the performance of
our algorithm against were high energy y-gun datasets.
These contained the detector readouts of a simple simu-
lated zero-pileup diphoton system at various energy levels
and contain the full simulated showering interactions of
the particles in every layer of the tracker and HGCAL.
We started with these sets because they are the cleanest
ones that allow us to solve many of the detector-related
problems, such as energy dispersion within the physical
layers of the detector, energy weighting, possible prema-
ture splitting of the photon in tracker interactions, etc.

The algorithm was found to perform very well on
these datasets, with a median error of 0.24mm and
o = 0.3bmm, as shown in Figure 2. Given the 5ps time
binning, with ¢ - 5ps &~ 1.5mm, and that there are on
the order of 102 rechits involved in the calculation of the
vertex per cluster (the hits with timing data), we would
expect the optimal possible performance of this algorithm
to be in the 107! mm range, which it is currently per-
forming in.
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FIG. 2. Results of the tVertexing algorithm applied to a large
~v-gun sample dataset, with the worst 1% of events trimmed
to allow for a better Gaussian fit.
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FIG. 3. Histogram showing frequency of vertexing error oc-
currence in the 500GeV ~v-gun dataset across a range of simu-
lated time-smearing values with the worst 1% of event recon-
structions trimmed. Time smearing values are computed by
applying a Gaussian smear to each individual rechit with u as
the real time-value of the hit, and o as the value represented
on the vertical axis.

In this vertexing, we discard any events without two
distinct regions of interest and events which have low
7 separations. The reasoning for the latter condition is
that very low n values increase the sensitivity of the ver-
texing algorithm to detection error, time binning, etc.,
particularly for low 7 separation at high values of 7.

IV. EFFECT ON RESOLUTION OF
SIMULATED TIME SMEARING

Our subsequent attentions were focused on analysing
the effects of simulated time smearing on the resolution of
the algorithm. The simulated detector readouts used in
this algorithm incorporate detector time binning, discrete
layer spacing, etc., but do not take into account other
types of detector peculiarities, such as noise and time
smearing (the variance around the actual time of a hit
that the detector will report).

We analysed the same 500GeV dataset from Section
111, adding a random Gaussian time smearing to each hit
with p as the actual time of arrival and o ranging from
0-50ps. The system seemed to be remarkably stable to
hit-based time smearing, with a full 50ps time smearing
only doubling the median error from an unsmeared, 5ps-
binned vertexing run, and tripling the median error for
50ps time smearing, as shown in Figures 3 and 4.
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FIG. 4. Median errors of vertexing results for the same

500GeV ~-gun dataset shown in Figure 3 over the same range
of time smearing values.

V. ENERGY DEPENDENCE OF VERTEXING
RESOLUTION

We would expect the vertexing algorithms we develop
to be more performant with higher-energy data sets, since
an increase in energy would give an increase in the num-
ber of points with timing data (requiring a soft energy
threshold), increasing the sample size from which to draw
a conclusion about the space and time arrival coordi-
nates.

Specifically, we would expect the resolution to be pro-
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FIG. 5. Precision over photon energy of the tVertexing al-
gorithm on ~-gun data sets at time smearing values of Ops
(lower) and 50ps (upper). Energies lower than 10GeV did
not have sufficient timed hits (§(E)) to reconstruct an inter-
action vertex.



tVertexed = - genVertex = for H—+y

tVertexed = - genVertex = for H—yy

4= -1.135+1.573mm, o (fit) = 53.227mm
68% error magnitude: 36.678mm
Median error magnitude:
Mean error magnitude:
Maximum error magnitude:
Minimum error magnitude:

No filtering

14.307mm

32.824mm

218.660mm
0.006mn

80

¥ =1145)
@
g
T

Counts (.

20

0 10 20
Error (mm)

tVertexed : -

genVertex = for i —~y
70 T

30 40

¥ =519)
o
g
T

Counts (
IS
8
T

% - T : T T
4= -0.964:1.203mm, o (fit) = 27.405mm 6 > 1
68% error magnitude: 6.920mm
go | Median error magnitude:
Mean error magnitude:
Maxinum error magnitude:
Mininum error magnitude:

1.529mm
11.391mm
202.565mm

0.006mn
7oL

@
2
T

w
]
T

-10 10 20 30

0
Error (mm)

2 tVertexed = - genVertex = for H—y

4= -9.146-0.675mm, o (fit) = 11.513m
68% error magnitude: 1.540mm
Median error magnitude:  0.920mm
| Mean error magnitude: 4.202mm
Maximum error magnitude: 85.141mm
Minimum error magnitude:  0.006mm

Opposite endcaps
At most 7 clusters

n=291)

Counts (.

-10

] 10
Error (mm)

=175

Counts (.

g = 0.392:1.041m, o (fit) = 9.018mn
68% error magnitude: 1.202mm
Median error magnitude:  0.516mm
Mean error magnitude: 3.595mm
Maximum error magnitude: 42.128mm
Minimum error magnitude:  9.123mm

Opposite endcaps
At most 7 clusters
+10GeV of Higgs mass

-30

10 20 30 40

0
Error (mm)

FIG. 6. Comparison of vertexing accuracy with various event filters in OPU H — ~+. From left to right, top to bottom: a)
no filtering, b) minimum 7 difference of 1, ¢) requirement for opposite endcaps (71 > 0, 72 < 0) and a maximum of 7 clusters
per event, and d) opposite endcaps, a maximum of 7 clusters, and invariant mass of my £ 10GeV. While this filtering method
is very effective at removing poorly-vertexed results, it also discards a large portion of the original dataset, increasing the

accuracy, but decreasing the efficiency.
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Ve’
& some relation between cluster energy and number of
timed data points. We would expect £ to be roughly
linear, but we have not yet had the chance to study this.

Qualitatively, Figure 5 (with energy log-spaced on the
horizontal axis) seems to follow this behavior in that
the resolution follows a monotonically decreasing convex
curve along increasing energy, though the error bars at
lower energies make this observation difficult to quanti-
tatively verify.

portional to

for E the energy of the cluster and

VI. IMPLEMENTATION ON H — vy

The next datasets we studied were OPU H — ~+ sets.
These are also very clean sets, like the v-gun sets, but a
few extra complications exist, such as pion generation,
variation in photon arrival locations (barrel/endcaps),
and various problems caused by hadronic interactions
and clustering.

Initial attempts at vertexing these sets performed rel-
atively poorly. Though a tight and well-developed core

about p = 0 was present, a huge number of incorrectly
vertexed events also existed.

The reasons for the initial poor performance are not
certain; possible reasons could include noise created by
high-energy pions from premature interactions from the
H — ~v photons or (more likely) incorrect clustering
of rechits with the Pandora clustering algorithm, as dis-
cussed in Section VIIIB.

To solve this, a few filters were implemented (aside
from the initial filter that there are two high-energy clus-
ters in the HGCAL endcaps). First we required there to
be an 7 separation of at least 1. While this did reduce
some of the incorrectly vertexed events, a large portion of
the events that were incorrectly vertexed were found to
be in the high-n regime, where 7 separation is less mean-
ingful. Thus, we replaced this condition with the condi-
tion that the photons selected for vertexing needed to be
in opposite endcaps, which further reduced the problem.

We also required that there be at most 7 clusters in
the event, since a large number of clusters could indicate
premature interaction with something before detection,
which would tend to invalidate the results.
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FIG. 7. Energy-weighted and unweighted hit values for a sample layer (layer 24/30) in the HGCAL endcaps for a total of 3992
photons. The 2D histogram shows a normalized 7, ¢ map of the energy-weighted hits in a given layer, while the side plots
show a cross-sectional unweighted hit map for the same event, with the top being a map over n and the right being a map over
¢. The energy of the hits in a cluster tends to be more tightly centered in the cluster compared to the comparatively spread
unweighted hit values. The overall tightness of the distribution (¢4, 04 ~ 0.02) indicates pointing algorithms may be a viable
choice for use as preliminary filters for the tVertexing algorithm, as the length (pointing axis) of the cluster is much larger than
the spread of the cluster (transverse pointing axis). An animated version of this figure is available in Appendix B.

Our final requirement was that the two photons se-
lected for vertexing had an invariant mass, given by

2
m? = (ZpTi coshm) —

2
‘ ‘ Z (pr, cos ¢; + pr, sin ¢; + pr, sinhn;) ‘
i

3)

that was within 10GeV (or any arbitrary range) of mpy =
125.09GeV. The (untrimmed) results of these filters are
shown in Figure 6.

VII. POINTING-BASED VERTEXING MODEL

Though the tVertexing algorithm gives an excellent
resolution when it is fed the proper cluster information,
a major disadvantage is that it requires two clusters cre-
ated from two distinct particles to reconstruct the inter-
action vertex. Here we introduce a secondary algorithm
which can estimate the interaction vertex given only the
spatial and timing data of a single cluster. We call this
algorithm “pVertexing”, as it primarily uses the point-
ing information given by the shape of a single cluster to
reconstruct the vertex.

Current algorithms like this exist using a principal
component analysis on the shape of the cluster (but no
timing information) to attempt to reconstruct the ver-
tex, but these tend to have a very poor resolution, on
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FIG. 8. Three-dimensional projection of the energy-weighted
rechits contained in a single cluster in one of the HGCAL end-
caps. The high linearity of the cluster gives reasonably good
pointing data. An animated version of this figure showing
rechit arrivals over time is available in Appendix B.

the order of a few centimeters.® These extract longitudi-
nal data from the relatively high axis length to transverse
axis length, shown in projected 3D in Figure 8 and use
the pointing data to trace back to the location closest to
the beamline.

The algorithm performs a BFGS nonlinear least
squares minimisation to solve for the interaction vertex
of a single cluster. We give an initial guess in cylindrical
coordinates of

0 = arctan (Vwi—wz>

¢ = arctan (£)
zZ0 = 0
to=0

and fit the z,y, z,t arrival data to the functions

xy = (t—0t)-csinfsin¢
yr = (t —0t) - csinfcos @
zf = (t —dt) - ccosf + 2o

(with dt the time of interaction). We then numerically
minimise the error function € = (z5 — )2 + (yy — y)* +
(zf — 2)? via a least squares method.

A. Implementation

The algorithm was tested on the same 500GeV v-gun
sets in Section III, yielding interesting results. The pVer-
texing algorithm gave a median error of 0.338mm, almost
as good as the results from Section III, when it was run
on each of the two "main” (highest energy) clusters of
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FIG. 9. Accuracy of the pVertexing algorithm when nu-
merically averaged over the two vertices reconstructed from
the two primary clusters. The median error magnitude is
0.339mm, almost as accurate as the tVertexing algorithm.
However, note that this technically holds no advantage over
the tVertexing algorithm, as two clusters are still required to
give accurate results, as the results in Figure 10, while tech-
nically still at a usable resolution, are obviously flawed.

the set and the results were averaged, as shown in Figure
9. However, each individual cluster pVertexing seems to
have a median offset of £3.5mm, shown in Figure 10.
The obvious structure shown in this figure (roughly
symmetric peaks about an origin with exactly zero hits on
it), combined with the high accuracy of the results when
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FIG. 10. Accuracy of the pVertexing algorithm using only
the first primary cluster. The median error magnitude is
3.864mm, and while this is still a usable resolution, the char-
acteristic widths of each half of the curve is much smaller than
this value, with opair ~ 0.7mm.



the individual pVertexed results are averaged means that
these offsets always happen in pairs, with one cluster be-
ing offset in either the positive or negative z direction,
while the other is offset a near-equal amount in the op-
posite direction. This suggests either a systematic error
with the algorithm or an error with the data set, such
as a spatial offset of the data along z, though as of the
writing of this analysis note, we have not been able to
locate this error.

The resolutions of each half of the results shown in
Figure 10 are actually quite good: ¢ ~ 0.7mm. If we
were able to isolate what was wrong with the data sets
or algorithm, this would potentially be a very effective
secondary algorithm for use with the tVertexing algo-
rithm for removing pileup and other unwanted interac-
tions. The dependency of the algorithm on only one clus-
ter would allow us to generate probable regions of inter-
action for each observed particle (cluster), then use the
tVertexing algorithm on pairs of them to obtain a finer
resolution.

The primary disadvantage of this algorithm, however,
is that it requires the interaction time of the collision.
While the tVertexing algorithm relies on the difference
of arrival times of two clusters, the pVertexing algorithm
looks at only one set of arrival times, requiring the pro-
duction time.

A possible solution to this would be to use tracker in-
formation to generate a set of possible collision times
and choose the one that produces the lowest error when
minimising e, which takes both the spatial structure and
arrival time data into account.

VIII. PROGRESS IMPEDIMENTS

A. Energy Weighting

Previous studies*® have shown in various types of ver-
tex reconstruction algorithms that resolution tends to
be optimized by energy-weighting the spatial positions
of the recorded hits per cluster. The specific energy
weighting scheme found to yield optimal results in® was

Etotal
threshold & (in Monet’s study, & = 3, though this value
requires further optimization and may vary by photon
energy). The time coordinates are not energy weighted
due to variability in energy deposition amount by layer,
though this has not been thoroughly studied.

We were unable to replicate these results on the simu-
lated HGCAL datasets. Specifically, when using even a
simple linear energy weighting on the spatial coordinates,
the resolution was worsened by over an order of magni-
tude, depending on the interaction type and energy in
the dataset. This dramatic worsening of performance
for what should be a simple modification indicated an
error in the generator-level energies in the datasets we
were using, which have had a history of various errors,

an arithmetic mean of log (L> + k for some cutoff

including incorrect generator-level vertices and previous
errors with generator-level energies, as discussed in the
next section. A large number of other weighting schemes
were tested as well, ranging from log weighting to expo-
nential weighting; none performed better than a simple
unweighted numerical average.

B. Clustering Algorithm

While searching for further energy problems in the gen-
eration of the datasets, we discovered a large problem
with how Pandora was clustering the rechits. Specifi-
cally, multiple clusters from distinct arrival events would
frequently be merged into an overly large single cluster.
The present HGC clustering using Pandora fails to pre-
serve the finer details of energy deposits in more complex
environments. In particular, even in zero pileup, photon
clusters can be contaminated by hadron remnants of the
proton-proton collision, and the existing clustering algo-
rithms can often group together energy that should be
in different separated into disjoint clusters. This is an
artifact of all clustering algorithms used in the HGCAL
so far being completely binary as to whether or not the
include a reconstructed hit in a cluster.

Since multiple particles can overlap even in simple
LHC collisions, especially in the high-n endcaps, it is eas-
ily possible to distort clusters unless the algorithms that
build them are aware of how to share energy between
overlapping energy deposits. Once this is achieved and
implemented in the HGCAL clustering code, a better in-
terpretation of the particle content impacting the end-cap
calorimeter can be realized, and more delicate quantities,
such as the cluster time, can be preserved. This is now
an ongoing task in the HGCAL software group and will
likely take the next six months to achieve.

Since the vertexing algorithms written in this study use
the detector-level information of the simulated datasets,
which is dependent on the Pandora clustering algorithm,
we suspect this clustering problem is the source of the
energy-weighting problems discussed in the previous sec-
tion. Additionally, it is quite possible this contributed to
some of the noise exhibited in Figure 6, both before and
after the filters were applied. This would not be present
in the simulated 7y-gun sets shown in Figure 2, as the
hadronic proton-proton remnants of the collision are not
simulated. Given proper clustering, we can expect the
H — ~y results (Figure 6) to conform much more like
the results of the y-gun sets (Figure 2) with submillime-
ter median resolution.

IX. DISCUSSION

The huge increase in pileup that will accompany the
Phase-II upgrades to the LHC! will require as many ver-
tex reconstruction constraints as possible maintain a rea-
sonable vertexing resolution and efficiency. The current



boosted decision tree algorithms used for tracker vertex
reconstruction break down horribly in high-pileup en-
vironments (with a vertex assignment accuracy rate of
around 30% in 140PU) and are unable to track uncharged
particles.

In this study we have provided two new algorithms ca-
pable of reconstructing interaction vertices from charged
or uncharged particles to submillimeter precision inde-
pendently of any tracker information. While this preci-
sion is still about an order of magnitude worse than the
current tracker resolution even in zero-pileup datasets,
this algorithm could, ideally, be used in conjunction with
the current tracker algorithms to better assign vertex lo-
cations in high-pileup environments.

The algorithms were found to reconstruct vertices in
low-pileup datasets to a median precision of about 300um
and is quite resilient to simulated time smearing, though
the simulated hit-based Gaussian smearing might not be
an accurate model of the time smearing present in the
HGCAL. Our results also indicate these algorithms retain
a useful resolution at energies as low as 10GeV, with
the resolution roughly doubling in the absence of time
smearing and tripling with 50ps time smearing applied.

Though the errors found in the current CMS cluster-
ing algorithms (discussed in sectionVIII B) prevented us
from extending this study to QCD jets and high-pileup
environments, a combination of tracker data to estimate
likely times of collisions, single-cluster vertexing with the
pVertexing algorithm, and two- or multiple-cluster ver-
texing with the tVertexing algorithm or a slightly mod-
ified variant using a numerical minimisation procedure
may prove superior to the current vertex reconstruction
algorithms when used in high-pileup environments.

A. Future Work

A variety of future work can be performed based on or
to further this research.

Of course, the first major step to continue this research
is the application to pileup and QCD jet datasets. Un-
fortunately, this will require fixing the clustering errors
in the Pandora algorithm, as described in Section VIII B,
a comparatively giant task.

Several shower slimming methods developed by Fla-
mant, et. al.* can potentially improve vertexing resolu-
tion by attaining a better definition of arrival time.

Integration with tracker data could allow for an es-
timation of interaction time, allowing for a preliminary
pass of the pVertexing algorithm over data sets to give
initial vertex estimates. A secondary pass of the tVer-
texing algorithm using clusters that appear to have com-
mon vertices could better reveal vertex locations. This
could potentially be used in conjunction with the current
boosted decision trees to more precisely narrow the ver-
tex locations and assign more likely and pileup-resistant
probability distributions.

The timing information used in these algorithms may

also assist in reconstructing vertices created in the
tracker by photon conversions, long-lived particles, or
bremsstrahlung.

Appendix A: Algorithm Details

Here we discuss in much greater detail how the file
system for this project is organized and how the impor-
tant programs work. Additional documentation can be
found in the actual source code (normal comments along
comments side-aligned at the 100 character mark to give
context), as well as in the “Documentation” directory.

1. Vertexing.py

This “master” file contains the main set of vertexing
algorithms and is used to vertex data sets and run vari-
ous tests described in this paper, such at time smearing,
energy resolution analyses, etc. Below is a description
of each of the functions in this module in the order in
which they appear in the source code (roughly organised
by topic).
Writer(): Helper class for
progress bars.

making multiprocessed

timeSmearing(): Simulates time-smearing in the rechit
arrival times by applying a Gaussian with p as the
actual arrival time and o as the input value.

timeSmearingTest (): Iterator function used to run a
resolution analysis over time smearing o values
and keep track of the errors. Calls Plotter.
tVertexErrorHist2D() to create a plot like the
one in Figure 3.

tVertex(): Given centroid locations and arrival times of
two clusters, triangulates their interaction vertex,
returning the physical vertex location and the rel-
ative time of interaction.

XYZtoEtaPhi (): Converts arrays of z,y, z coordinates to
an 7, ¢ map using the transformation

¢ = arctan (%)

),

n = —log 5

getClusterArrivalTimes(): Averages the arrival times
of rechits in a cluster. While the cluster data in the
root files includes an arrival time for the cluster, we
believe this time to be faulty in the sets, as it always
increases the error by an order of magnitude or so
when used.

getClusterXYZ(): Computes the x,y,z arrival co-
ordinates. The (cluster.centerX,cluster.
centerY, cluster.centerZ) coordinates were



found to give faulty arrival data that greatly
increased the median error. Arrival coordinates
are computed with a flat average over x, y, and z,
since the energy data in some of the sets seems to
be bugged.

pVertex(): Performs a BFGS nonlinear least squares
minimisation to solve for the interaction vertex of a
single cluster. We give an initial guess in cylindrical
coordinates of

6 = arctan (W)

¢ = arctan ()
20 = 0
to =20

We fit the z,y, z,t arrival data to the functions

xy = (t —0t) - csinfsin ¢
yr = (t —0t) - csinfcos ¢
zp = (t—4t) - ccosf + 2

(with dt the time of interaction) and numerically
minimise the error function (zy —z)? + (y; —y)? +
(zf — 2)? via a least squares method.

getClusterPointer (): Deprecated method to perform
a similar procedure to a PCA analysis to retrieve
pointing data.

pVertexPCA(): Deprecated method. Uses the PCA data
from the clusters to reconstruct the vertex location.

gammaGunFilter(): Applies a set of filters to ~-gun
events. Similar to HggFilter, but separately mod-
ifiable.

HggFilter(): Applies a set of filters to a H — vy data
set, including selecting for at least two ROI’s, us-
ing at most n clusters, selecting events with cluster
energy criteria, filtering events by invariant mass,
and imposing 7 separations.

HiggsInvariantMassFilter(): Returns a boolean rep-
resenting if the invariant mass of an event is within
€ of mpgyg.

invariantMass(): Calculates the invariant mass of the
two most energetic regions of interest in an event,
as shown in equation 3.

fourVector (): Simple class with add () and dot () prop-
erties that represents the energy-momentum 4-
vector of a physics object. Used in invariant mass
filtering.

energyResolution(): Multiprocessed  function for
analysing resolution as a function of energy, such
as in Figure 5.

singleThreadedEnergyResolution(): Singly-
processed version of energyResolution() which
is easier to debug.

ROIEnergyAnalysis: Deprecated troubleshooting func-
tion testing the linearity of the observed energy
summed over all rechits in a ROI compared to the
generator-level energies.

genEnVsEn: Another troubleshooting function testing de-
tector energy response linearity.

vertexData: Main “vertexing loop” of the program.
This vertexes data sets using pVertexing and tVer-
texing methods, keeps track of errors, and can
be used to plot relations, calculate statistics, trim
events, etc.

2. Plotter.py

This set of functions contains all relevant plotting pro-
cedures to the algorithm; it does very little computation
itself. This program makes extensive use of libraries that,
as of August 2015, are not contained in Ixplus by default,
so it either needs to be run locally or in a virtual envi-
ronment. We briefly discuss each function below in the
order they appear in the code.

vertexPlot (): Initial function used to plot a crude rep-
resentation of a vertex location relative to the size
of the CMS. Mainly used for visualization and san-
ity checking purposes.

showerAnimator(): Plots an animated 5D (z,y,z,t,
energy) graph and renders it to an animated gif.
Each frame is rendered independently as a 3D scat-
ter plot, with the color and size of each point ad-
justed relative to its energy. By default, shadows
are also rendered on the zz, yz, and zy axe. The
frames are combined into a gif using the ImageMag-
ick plugin. If you don’t have this plugin, you can
still render the frames and use an external program
to combine them. The delete option allows you to
delete the frames when the combined gif is made.

XYZtoEtaPhi(): Simple function to convert z,y, z coor-
dinates to an 7, ¢ map.

layerVarianceFrame (): Function that renders the indi-
vidual frames for layerVarianceAnalysis() like
the one shown in Figure 7. Four subplots are con-
structed to contain the 2D histogram, the two side
plots, and the colorbar. 1o, 20, and 3¢ curves are
drawn on the data, and the background is colored
the same value as the zero value (the background
is normally white; this is an aesthetic preference),
and the frame is saved as an image in a folder.



layerVarianceAnalysis(): Invoker function to call
layerVarianceFrame() repeatedly to generate a
layer-by-layer animation of energy distribution in
the detector cells. Combined necessary data at
the beginning of the function to a single prop-
erly formatted array using a horribly inefficient,
lazy, one-time use method, then passes this data to
layerVarianceFrame () and generates a new frame
for each layer, finally combining the frames into an
animated gif using ImageMagick.

tVertexErrorHist (): Plots an error histogram for ver-
texed z values, calculates some relevant statistics,
fits a scaled Gaussian to the curve, and plots the
data, as shown in Figure 2.

tVertexErrorHist2D(): Plots a 2D error histogram for
the vertexed z values along space and some other
axis, such as time smearing, as shown in Figure 3.

smearingBarPlot (): Plots median errors of vertexing
algorithm with respect to time smearing o, as in
Figure 4.

energyResolutionBarPlot (): Plots median errors of
vertexing algorithm with uncertainties as a func-
tion of particle energy.

energyResolutionLinePlot (): Plots median errors of
vertexing algorithm with uncertainties over particle
energy as a line plot, as shown in Figure 5.

energySpectrum(): Plots pr spectrum for a dstribution.

fourVector (): Mathematical 4-vector for calculating in-
variant masses of systems.

invariantMass(): Calculates the invariant mass of a
two-particle system. Copied from file Vertexing.

py.

invariantMassDistribution(): Plots a histogram of
invariant masses for a (usually filtered) event.

invariantMassErrorPlot: Plots error magnitude as a
function of invariant mass, used in analytics.

sumEnergyVsGenEnergy (): Plots the sum of energies in
a cluster against the generator level energies of the
cluster. Used for verifying a linear maximum en-
ergy response in the HGCAL, which helped with
debugging some errors.

3. RootProcessor.py

The purpose of this script is to convert HGCROI-
formatted root files from EDMProcessor.py to an
identically-structured numpy array, which is faster and
easier to work with for computational purposes.
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This script is relatively straightforward. After some
initial argument parsing, we load the necessary platform-
specific root libraries and open a new processing job for
each file to process (these will be processed concurrently).
In each job to process, we set up a structured numpy
array with a depth of four layers that mirrors the root
tree. The reason for using numpy arrays instead of root
trees is that they seem to be more platform independent,
work well with python and outside lxplus, and do not
require initial loading past opening the file.

The structure of the array is array[eventNo]
[dataClass] [dataType] [index]. The first index,
eventNo, simply represents the index of the event of in-
terest, ranging from 0 to the length of the data set. For
the data class, we use indices from 0-4 to represent the
data class in increasing level of abstraction (due to numpy
not liking multiple layers of record arrays). This is given
below:

e 0 = Recorded hits (rechits)

o 1 = Cluster data

e 2 = Regions of interest (superclusters)
e 3 = Vertex data (not always present)

e 4 = Generator-level vertex data

The vertex data (3) is representative of a reconstructed
vertex using other algorithms unrelated to this analysis
note and is usually not present in datasets.

The third index, dataType is indexed by a struc-
tured array with keywords corresponding to the respec-
tive names in the root files. The fourth index corresponds
to the n'" element of the array.

For example, to access the energy of the 27th rechit of
the 21st event (zero indexed), we would simply use:

array[21] [0] [’ en’][27].

A structured array like this is built for each event,
which is appended to the overall output array. This fi-
nal array is saved in binary form to a .npy file using
np.save(). After completing all running processes and
saving the relevant files, the program terminates.

4. EDMProcessor.py

This script takes the full EDM readout of a simulated
dataset and converts it to a HGCROI-formatted root file
(a general TTree structure containing relevant informa-
tion to the HGCAL).

This script is also simple. We initially parse the ar-
guments and have a small module to support wildcard
usage, then simply call the relevant programs from the
HGCanalysis package, which process the EDM files.

This script was modified from a previously existing ver-
sion.



Appendix B: Animated Figures

Several figures in this note represent systems evolving
over time and feature animated content. All of the figures
with animation in the analysis note can be viewed in an
album at gfycat.com/bencbartlett/tvertexing.

Appendix C: Source Code

Any of this code written in this analysis note is avail-
able upon request from the first author or in an open-
source GitHub repository (github.com/bencbartlett/
tVertexing).

Appendix D: EOS, AFS Data and Dependencies

All data sets used in this project are available on
the CMS EOS server at /store/cmst3/group/hgcal/
CMSSW/. All files used in this project are also available at
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/afs/cern.ch/user/b/bbartlet, with the main project
files being found at /afs/cern.ch/user/b/bbartlet/
public/tVertexing.

All code in this project was run on Ixplus using the
CMSSW_6_2_0_SLHC25_patché framework and Python
2.7.10rcl or Python 2.6.6 with NumPy 1.4.1 and SciPy
0.7.2.  Code that was run locally was run using the
CMSSW_7_4_5_FWLITE framework and Python 2.7.10 with
NumPy 1.8.0rcl and SciPy 0.13.0b1.
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