
Tracking by Neural Nets1

Arash Jofrehei2

August 14, 20153

Supervisor: Dr. Jean-Roch Vlimant4

1 Project Outline5

1.1 Track Reconstruction vs Machine Learning Tracking6

I spent my first week studying about current track reconstructing methods.7

Current methods start with two points and then for each layer loop through all8

possible hits to find proper hits to add to that track.9

Another idea would be to use this large number of already reconstructed events10

and/or simulated data and train a machine on this data to find tracks given hit11

pixels. Training time could be long but real time tracking is really fast.12

Simulation might not be as realistic as real data but tracking efficiency is 10013

percent for that while by using real data we would probably be limited to current14

efficiency.15

The fact that this approach can be a lot faster and even more efficient than16

current methods by using simulation data can make it a great alternative for17

current track reconstruction methods used in both triggering and tracking.18

1.2 strategy19

First we should define tracking in machine’s language.20

We give a neural network some questions (hit pixels) and answers (tracks) to21

these questions.22

Neural net will train itself on this dataset.23

We ask new questions and neural net answers.24

Final step is translating these answers to our language and validating results.25

2 Simplified Detector and Tracks26

We had to start with simplified problem to see if this idea works.27

Assume that detector has four flat parallel layers and each layer has 25 (5 by 5)28

cells. We also tried other number of cells per layer which I will explain later.29

We have 4 tracks. We started with random number of tracks but then decided30

1

Figure 1: tracks in x axis view

to use fixed number of tracks to make this problem simpler. We chose 4 because31

it would lead to a reasonable hit density for 5 by 5 layers. Each track is part of32

a circle with almost random parameters. Track planes are perpendicular to z-y33

plane (z is the beam line axis). All tracks start from the origin of space, hit all34

layers and do not collide with each other. (figure 1 and 2)35

We find hits in a way that we choose random points in 2nd and 4th layer36

considering limitations told above and then pass a circle through these two37

points and origin of space and find hits in other two layers. Then find cells that38

contain these points and finally check that all layers have been hit and tracks39

do not pass through the same cell.40

3 Dataset41

Input layer of neural net is a binary vector each component of which represents42

a cell in the detector and is 1 if the cell has been hit and 0 otherwise.43

Suppose that we sort tracks in an ascending order by their radius and assign an44

index to each track. (indices start from 1)45

Then divide these indices by number of tracks. Now for each hit the output46

would be a number between 0 and 1 while it’s 1 if the hit is in the track with47

highest radius.48

49

output for a pixel =

{
0 if pixel hasn’t been hit

index of track which has passed through that pixel
number of tracks

if pixel has been hit

You can see input vs output plot in figure 3.50

2

Figure 2: perpendicular view of circle planes

Figure 3: input (yellow circles) vs output (blue triangles)

3

4 Libraries51

4.1 Pybrain52

PyBrain1 is a modular machine learning library for Python. I trained neural53

nets with it during 2nd, 3rd and 4th week. It’s a pretty good library for starters54

but accessing its training parameters is usually impossible or hard. As these55

parameters have a vital effect on speed and accuracy of neural network results56

and should be tuned for each network, I had to move on to another library.57

Another reason to leave PyBrain was that it doesn’t support GPU while using58

GPU would be necessary for complicated neural networks with long training59

times.60

4.2 Theanets61

Theanets2 is another machine learning library. Unlike PyBrain, there are a lot of62

training algorithms and parameters which should be tuned for each network.It’s63

also built on Theano3 so supports GPU.64

Theanets uses downhill4, a library to optimize functions (cost function in this65

case) with lots of options on algorithms and their parameters.66

5 Algorithms and Their Parameters67

5.1 General Parameters68

learning rate : This is almost the most important parameter. It represents69

step sizes while approaching toward minimums and varied between 0.00001 to70

0.1 for different networks and algorithms that I worked with.71

Here are some important facts that I figured out while tuning learning rate:72

Constant step size usually doesn’t work. You have to start with relatively larger73

step sizes to avoid local minima (This model has a lot of local minima about74

which I’ll talk later) and after finding the best valley, you have to decrease step75

size to reach its minimum.76

By looking through some neural net codes and contacting other coders, I fig-77

ured out that sometimes experienced coders find algorithms for decreasing step78

size based on their special network but neither I was that experienced nor we79

had any clue about topology or shape of cost function of our network. Usually80

no one knows exactly how cost function shape is and people use some general81

algorithms. There are available algorithms which decrease step size themselves82

based on an initial learning rate and a history of how cost function has reacted83

after each step in a way that they start with large steps and decrease step size84

near minima.85

1http://pybrain.org
2http://theanets.readthedocs.org/en/stable/quickstart.html
3http://deeplearning.net/software/theano/
4http://downhill.readthedocs.org/en/stable/guide.html

4

Even by using these algorithms, we need to decrease learning rate manually,86

too. The reason behind that is that algorithms decrease step size near mini-87

mums (more flat areas) and the closer you get the smaller step size tends to88

be but you might never get that close to a minimum by a step size to make the89

algorithm decrease it so you have to decrease it manually. I figured out that90

the best time to decrease learning rate is when cost function starts to be still91

because if I decrease it too soon, it would increase training time a lot and more92

importantly, increases the probability of getting stuck in a local minimum and93

if I don’t decrease learning rate when cost function starts to converge, usually94

after a very long time it reaches it’s minimum while I could reach there a lot95

sooner by decreasing learning rate.96

In Theano and Theanets, learning rate is stored as a constant as the initial step97

size and algorithm adapts step sizes during training and after changing learning98

rate, it re-initializes step size to new given learning rate. This is why we have99

to be careful when decreasing learning rate as we may even increase step size100

by decreasing learning rate. I usually decrease learning rate 2 or 3 times during101

training process.102

103

momentum : In each step of training a neural network, we update network104

parameters (weights) by subtracting a number proportional to step size and105

gradient of cost function with respect to weights from each weight (Different106

algorithms use different approaches but the main idea is as told above). By us-107

ing momentum, we also divide weights by a certain factor (momentum) in each108

step which prevents noises and long jumpy steps. The problem though, is that109

if I use momentum from the starting point, it slows down training process a lot110

as we are too far from minimums at first and we actually need those big jumps.111

The good thing about momentum compared to learning rate is that changing112

momentum improves results even after full convergence so I decided to use a113

momentum about 0.9 in final part of training process.114

115

dropout : By using dropout for a layer in network, in each updating step,116

we kill each neuron in that layer with a probability of dropout value. Killing117

n neurons means that we ignore those neurons in that step and update other118

neurons exactly like that layer had n less neurons.119

Using dropout helps us to prevent over-fitting, a condition when we train on our120

training samples too much that we lose the generalization of results and network121

gives worse results on validation samples. The best and logical way to prevent122

over-fitting is increasing samples but for large networks I needed relatively more123

samples which were impossible to store so I used a dropout about 0.8 to 0.9 for124

hidden layers. I should mention that we cannot use small values for dropout125

as killing a lot of neurons at each step will somehow make a training process126

meaningless.127

128

batch and epoch parameters : During each iteration, the optimizer instance129

processes training data in small pieces (batch-size) called mini-batches. Each130

mini-batch is used to compute a gradient estimate for cost function, and the131

5

parameters are updated by a small amount. In each epoch, a fixed number of132

mini-batches (validation-size) are processed. After a fixed number of epochs133

(validate-every) have taken place, the cost is then evaluated using a fixed134

number of mini-batches from the validation dataset.135

Optimization epochs continue to occur, with occasional validations, until the136

loss on the validation dataset fails to make sufficient progress (more than min-137

improvement percent of lost) for long enough(patience times). Optimization138

halts at that point. 5 (bold parameters have to be set when defining a trainer)139

140

Leif Johnson 6 : ”I think of full batch vs mini-batch as a trade-off between time141

and accuracy. With a full batch, you spend more time computing an accurate142

(at least, the most accurate that you can get with your data) estimate of the143

gradient. With a mini-batch, you spend less time but get a noisier gradient144

estimate.”145

146

Andrej Karpathy 7 : ”Usually you want to use batch size of 1. This basically147

controls how accurate the gradient steps of your network will be. If you let the148

network see 100 examples in a batch, it will be able to estimate a much better149

value for gradient before it actually takes the step. However, in practice a value150

of 1 (and having an appropriately small learning rate) is probably the best way151

to go.”152

153

What I understood by changing batch size:154

By using a large batch size you increase stability of updating steps and each step155

takes relatively more time as we have to compute gradients for more samples156

and then take a step proportional to average gradient. While using small batch157

sizes, weights and therefore cost function change in a noisy way and to control158

this noisy behavior, we have to decrease learning rate (even by a factor of 100 in159

some cases). Although large batches cause greater training time for each epoch,160

overall training time is much more longer while using small batches because we161

waste a lot of steps jumping around in a noisy way and more importantly, we162

would have smaller step sizes.163

A more important problem with using small batches is that using small step164

sizes sometimes leads to getting stuck in local minima.165

Although if we solve local minimum and training time problem, using small166

batches will lead to better final results because we would use the full capacity167

of our samples individually and independently.168

Using batch sizes that are a multiple of processor’s warp size (32 for my case)169

will speed up training process a lot as matrix operations are defined in a way170

that will be faster this way.171

As I said above to improve final results we need to see each sample individually172

and independently but too small batches cause problems. I have experienced173

5http://downhill.readthedocs.org/en/stable/guide.html#batches-epochs
6Computer Science doctoral student at The University of Texas at Austin and a contributer

of Theanets
7Stanford Computer Science Ph.D. student

6

that we’d better set batch size and dataset size as co-primes so while looping174

through batches, we would never have same batches and this means we will have175

both stability and independence. Another approach is shuffling samples after176

each epoch which worked a little better than co-prime approach. I used this in177

batch-loading approach which I’ll explain later.178

In conclusion, I decided to use larger batches (1024 for example) first and after179

getting closer to minimum, I decrease batch size to 32 or 64 and I also use180

approaches that I talked about above to avoid local minima and also see each181

sample independently.182

5.2 Algorithms183

Theanets uses downhill library to optimize cost function. You can find theories184

behind all algorithms and expected parameters for each algorithm on downhill185

site8. Pybrain only uses Stochastic Gradient Decent (sgd) as a simple and186

basic optimization method but sgd is neither accurate nor fast and sgd is not187

common these days anymore unless for some special networks. I tried almost188

all algorithms, but found resilient backpropagation (rprop) , rmsprop189

and adadelta the best. Steps in these methods are determined by the history190

of optimization as I described before in learning rate section. adadelta doesn’t191

have a learning rate and uses an alternative step size. Although it has shown192

better performance in some image processing neural networks like CIFAR-10,193

the fact that I couldn’t have access to step sizes for each epoch made adadelta194

inappropriate for my case. For simple neural networks, rmsprop and rprop had195

almost the same performance unless rprop was a lot faster and rmsprop has two196

more parameters to tune which makes it hard to reach the same performance as197

rprop. For more complicated neural nets, rmsprop stopped working sufficiently.198

After tuning all parameters for a few networks, rmsprop results got relatively199

better but still not as good as rprop so I decided to use rprop.200

201

I think it would worth mentioning that the main challenging problem in this202

project is tuning parameters specially for larger networks. Because performance203

gets much more sensible to parameters while using large networks and training204

time increases which again, makes it harder to tune parameters. Usually I try205

to find best parameters for small and medium networks and then either look for206

tuned parameters around these values for large networks or just use the same207

values if network is too large and untunable.208

6 Activation Functions209

There are a lot of activation functions available for Theanets.9210

The best activation function for output layer was sigmoid(logistic) which wasn’t211

hard to guess as we expect outputs to be between 0 and 1.212

8http://downhill.readthedocs.org/en/stable/guide.html#optimization-algorithms
9http://theanets.readthedocs.org/en/stable/creating.html

7

Figure 4: expected(yellow dots) vs neural network(blue lines) output

For hidden layer(s) the best ones were relu and sigmoid. Usually, wherever relu213

works fine, maxout should make it better because maxout acts exactly like relu214

unless it assigns more free parameters (weights) to each neuron but it couldn’t215

improve results and even made it worse in some cases.216

The problem with relu is that it acts like linear for positive inputs and doesn’t217

have an upper limit on its outputs and more importantly it’s not continuous218

and is 0 for all negative inputs. This discreteness somehow kills some neurons219

while training. Reacting in a same way to two or more different neurons can be220

the same as keeping one and ignore others. This problem makes cost function221

to get stuck in local minima specially for small networks. I tried both relu and222

sigmoid for XOR gate problem and figured out that there’s no way to avoid223

local minima (XOR has a lot of local minima) while using relu for hidden and224

output layer. For my case cost function decreases much more smoother (avoids225

local minima) while using sigmoid (although this network still has a lot of local226

minima) so I decided to use sigmoid.227

7 Assembling228

Neural network output is a vector with float components between 0 and 1 (figure229

4). We need to translate this output to see how it has assembled hits to form230

tracks. Almost the inverse procedure that we created expected output from231

tracks.232

I had two main approaches and worked on them to make them faster and also233

more compatible to next step which is validation. I should mention that all234

assembling approaches work the same when neural network output gets close to235

expected output.236

237

Sorting : I iteratively loop through all detector layers and assemble maximum238

outputs together.239

For example for a detector with 4 layers and 25 cells per layer, I divide the 100240

dimensional neural network output into 4 parts (1 to 25, 26 to 50, 51 to 75, 76241

8

Figure 5: Histogram of a clustering input sample. It’s not our neural net output,
just a sample to show how clustering algorithm works. It was created in a way
that it should have 20 clusters with random number of inputs in each cluster

Figure 6: Clustering scores for different number of clusters. Notice that it’s
found 20 as breaking point as was expected for clustering input in figure 5

9

to 100) and then find maximum outputs for each part. These four hits then242

would be considered as hits of a track. Then I do the same thing for second243

highest outputs and so on.244

245

Advantage : Sometimes network cannot separate outputs well enough in (0,1)246

interval (needed for clustering approach) but usually keeps the arrangement for247

each layer.248

249

Clustering : Network outputs are clustered to unknown number of clusters250

which represents number of tracks and then hits in each cluster would be as-251

sembled together.252

Clustering algorithm: Given the network output vector, first I put a low cut on253

outputs (0.1 or 0.05 works fine) then save all outputs in a matrix each row of254

which is [hit index of output , output value] and sort this matrix by it’s second255

column. Now I have to cluster the second column but there was no available256

clustering algorithm to cluster into unknown number of clusters so I found a257

way which works fine at least for this one dimensional clustering problem.258

Given the outputs (second column of matrix) I calculate differences between259

each output and its next output. Then I cluster these differences into two260

clusters, small differences which show close outputs and large differences which261

represent a gap between two output clusters. Now expected number of output262

clusters (number of tracks) would be number of gaps plus one.263

Although, we have to make sure that we have found the right number of tracks.264

To do this, I cluster outputs to other number of clusters in a range around found265

number. Clustering algorithms return a clustering score which is a chi-square266

like value. This value would increase by increasing number of clusters but after267

plotting these scores for those different number of clusters, you can see that268

it has a breaking point after which plot gets more flat which means clustering269

inputs have been to separated (figure 5 and 6). So that breaking point would be270

our revised number of clusters. To find that breaking point I cluster differences271

between each score and next one into two groups and accept the separating272

point of these two groups as breaking point. After finding this number, we have273

to cluster neural network outputs into this number of clusters and keep all hits274

in a cluster as a track.275

276

Another clustering approach that I tried, used the fact that neural network277

outputs should be symmetric and clustered them in a way that we keep this278

symmetry but it was much more slower than the other approach so we decided279

not to use it.280

One problem with our clustering method is that sometimes it merges close tracks281

so we have tracks with more hits than number of layers but I finally decided to282

ignore this problem because first, we wanted this clustering approach to work283

for most general case in which we may even have tracks with more hits than284

number of layers due to noise and second, each approach that I tried to fix285

this problem would destroy generalization of clustering method in a different286

way while better networks can separate outputs well enough and I had sorting287

10

method for worse networks. Still, improving this approach can be one of next288

steps on this project. I should mention that goodness of hits which I’ll talk289

about it in next section uses only clustering assembling so reported results for290

that would vary by improving this assembling approach.291

292

Advantage : In general, we don’t know how many tracks we have and more293

importantly, this method works even if a particle doesn’t hit some layers.294

295

8 Validation296

The whole idea of validating network results is as follows. A good hit is a hit297

which has been found correctly. A good track is a track for which a certain298

ratio of hits have been found correctly. A good event is an event with certain299

ratio of good tracks.300

After assembling hits I save all hits separately (in a matrix each row of which301

contains hits of a certain track). At first I used to compare tracks in a way that I302

iteratively compared a track with highest energy from expected tracks with the303

highest energy track from neural network tracks but that’s not actually what304

we want. Neural network doesn’t have to find energy index of a track correctly,305

it has to just assemble hits correctly and then while fitting a trajectory through306

hits, we will find track’s energy. Results with the first approach are reported307

with an ”old” label. In the new approach, for each event, after saving all hits in308

those matrices, for each track in expected output, I loop through all neural net309

tracks to find a track that completely matches with that and then delete that310

neural net track, then I do the same thing but accept one mistake and so on311

and meanwhile, I count good hits and also good tracks. I do this for all events312

and then calculate an average value for event, track and hit efficiency but keep313

all the data and don’t replace any data by its average value (I though we may314

need them for comparison at next steps).315

9 Models and Performances316

I started working on a wide range of models from second week. Our neural net is317

feed forward and fully connected. During 2nd, 3rd and middle 4th week we saw318

exactly no sign of any promising results which wasn’t too strange as no similar319

neural networks was available to learn from so we had no idea about which320

topology, activation functions, dataset size and ... to use. A short summary of321

what I did in those 3 weeks is as follows:322

At first we had 10 hidden layers while each layer had 100 neurons (like input323

and output). Detector layers were 100 by 100 (representing a 10 cm by 10 cm324

piece of real detector). Each event had a random number of tracks between325

1000 and 4000. Dataset size was roughly between 100 to 1000 while 70 percent326

of samples were used for training and the rest for testing while training and also327

11

Figure 7: a typical neural net result achieved for 100 by 100 layer and random
number of tracks between 1000 and 4000 - notice that neural net output is
almost zero for all cells

Figure 8: started to get promising results by reducing module size and number
of tracks

final validation. (figure 7)328

After failing to achieve any promising results, we decided to make this problem329

simpler by reducing module size from 100 to 20 and then 10, using fixed number330

of tracks and using less tracks (4 tracks) to have a more reasonable hit density in331

detector layers. Neural network predictions started to change from completely332

random numbers and move toward expected shapes but still it was far from any333

promising result.(figure 8)334

From late 4th week I started to use Theanets. Training got a lot faster by335

using different algorithms and also using GPU (about 500 times faster which336

was mostly a result of using algorithms like rprop). I also figured out that337

dataset size should roughly be something between 10 to 30 times number of free338

parameters in model so I had a too small dataset. I also decided to simplify339

topology of model to reduce training time and also number of free parameters340

12

and therefore needed dataset size. So I tried 1 to 6 hidden layers each with the341

same size as input and output and also reduced module size from 10 to 5 (5 by342

5 layers).343

By looking at figures 7 and 8, it’s obvious that neural network predictions were344

too bad to use any assembling or validation method (any figure of merit would345

be 0) so I used to compare cost functions in first 4 weeks but by simplifying346

topology and using theanets we started to get better results so I needed to347

develop those assembling and validation methods I talked about in previous348

sections.349

I also had some problems while using theanets with GPU (monitoring cost func-350

tion while training, passing some training parameters used to cause problems,351

results behaved a lot different with CPU and GPU and ...). It took me 2 weeks352

until I could use it completely and efficiently. I also figured out all those facts353

about algorithms and their parameters and activation functions and ... during354

5th to 7th week.355

From late 5th week, we tried to increase number of neurons per hidden layer.356

While using fixed number of hidden layers (we tried 1 hidden layer) increas-357

ing number of neurons improved results. Adding more hidden layers improves358

results, too. By comparing training time and performance, I figured out that359

it’s better to use more neurons per each hidden layer than input and output360

but not too much because after a certain number of neurons, adding another361

layer would be much more efficient. Although we didn’t know these fact until362

the 7th week because at first, adding more free parameters (either by adding363

layers or neurons per layer or ...) to neural network would lead to worse results.364

The problem was that as I talked about it before, for larger neural nets tuning365

parameters tends to be a really hard task and we need more training samples366

and more importantly, figuring out if cost function has converged to something367

or we have to wait more becomes really challenging about which I will talk later.368

You can find best track performances achieved by using different number of hid-369

den layers and neurons per layer in figures 9 and 10.370

371

As complete convergence of a model usually takes a long time, sometimes I stop372

training process when there’s no sign of converging to a good efficiency and373

that’s one of the reasons that almost half of models that I tried are not reported374

in figure 12. Although they mostly have the same topologies but with different375

parameters and activation functions.376

377

A summary of final results:378

For more accurate models with track efficiency more than 48 percent, about379

81 percent of hits have been found correctly which is 13 out of 16 hits and it380

doesn’t change a lot when track efficiency varies in this range.381

51 to 54 percent of tracks are fully reconstructed for 5 by 5 models.382

About 88 percent of tracks are reconstructed with one mistake.383

About 30 percent of events are fully reconstructed.384

Notice that by each mistake in assembling hits, we lose 2 out of 16 hits and 2385

out of 4 tracks so on average, neural network has about 1 to 1.5 mistakes.386

13

Figure 9: best track efficiencies achieved using sorting assembling method (per-
cent); detector layers are 5 by 5; each hidden layer has 100 neurons as input
and output; each value has a maximum error bar about 1 to 2 percent due to
probable early stopping or small validation dataset

Figure 10: best track efficiencies achieved using sorting assembling method (per-
cent); detector layers are 5 by 5; used one hidden layer

14

Figure 11: error on neural network results for 4 tracks case where expected
outputs are 0.25, 0.5, 0.75 and 1; You can see how this error converges to
around 0.15 for a model with 6 hidden layer, each with 100 neurons and 5 by 5
detector layers

10 by 10 models have a lot better performances compared to 5 by 5 models387

with similar topologies but I couldn’t try large neural networks for them due to388

memory errors and these reported models were trained for about 15 hours but389

cost function was still decreasing for them so they need more training. I’ll talk390

about these two issues later.391

10 Observations392

I should emphasize on two important facts that I encountered during training393

these models: Early stopping and local minima394

Cost function keeps decreasing after each training epoch but after a while it395

changes too slow and by considering the fact that training time for each epoch396

for models that I worked with in this project were relatively long a challenging397

part was deciding when to stop training process. One way was using min-398

improvement that I talked about before but this approach doesn’t work well399

when cost function doesn’t have a smooth converging behavior. By looking at400

figures 13 and 14 you can see that cost function seems to converge at first but401

after a lot of epochs it decreases by 0.5 which is a really vital value.402

As I mentioned before, there were a lot of local minima in this neural net (fig-403

ures 15 and 16). I looked through literature and figured out that every local404

minimum can be smoothed by adding enough training samples but still one chal-405

lenging problem that coders encounter to is flat areas which cannot be solved406

completely by adding samples and also I had limitations on dataset size. So I407

tried to study this problem in XOR problem which as I told before, has a lot of408

local minima. Simplicity of XOR makes it too fast and it’s easy to try different409

ideas on it. I mentioned some methods to avoid local minima like using learn-410

15

Figure 12: best achieved track efficiency for some models ; C: module cell (cells
per edge) ; L: hidden layer ; N: neurons per hidden layer ; K: thousand samples
; M: million samples

ing rate properly or co-prime approach or shuffling dataset but finally I found411

another approach which although requires more study in main network, works412

better than other approaches for XOR problem. I tried to look into network413

parameters (weights) for XOR problem with sigmoid layers (relu almost never414

works) and see how these local minimums occur. I figured out that getting stuck415

in a local minimum depends on initial distribution of weights a lot. For example416

by only working on the sign of each initial weight I could completely avoid local417

minima in XOR problem. Although this approach might not seem wise as we418

are using results to find results (we need to train XOR once and find final signs419

and then initialize weights with the same signs but arbitrary absolute value)420

but sign of weights doesn’t seem to be too much information and probably can421

be obtained by a pre-trainer, too.422

I also looked into final weights for our neural network and figured out that423

weights for each layer have almost the same distribution. For a 5 by 5 model424

with 6 hidden layers each with 100 neurons bias weights were some numbers425

around 1 or 2 and neuron weights had a distribution with two peaks at 0.003426

and -0.003 while default initial values for all weights are set by a normal dis-427

tribution with deviation around 1 and mean 0. I set initial values manually for428

this model and cost function converged a lot faster and smoother. Distribution429

of weights for the same model with 5 layers was almost the same, too. Although430

I worked on this method on my 8th (last) week and didn’t have time to look431

into it with more details. One of next steps can be looking into weights while432

training and investigate their behavior and also compare weight distributions433

for different topologies.434

435

16

Figure 13: cost function on validation
data

Figure 14: same plot after removing
first 300 epochs

Beside these two problems, I encountered another problem while working on436

10 by 10 models with 4 tracks. After a certain point, hit and track efficiency437

were almost constant while cost function was still decreasing. As cost function438

was decreasing on both training and validating data, it couldn’t be an over-439

fitting problem so most probably definition of cost function had some problems.440

Current definition is as follows:441

cost function =

∑
output vector components

(expected output − neural net output)2

output vector dimension

I figured out that for latest models, neural networks learns to set zeros in input442

to values close to zero in output really fast and then tunes nonzero values. It’s443

possible that trainer reduces cost function by reducing those values near zero444

after a certain point and although it’s not noticeable for each component, we445

have a lot zeros in input which would make a noticeable overall difference in446

cost function which means trainer is wasting a lot of steps. We can modify447

cost function after a while to make it less sensible to zeros or modify activation448

function of output layer by adding a below cut on outputs and considering all449

values near zero as zero (so training steps wouldn’t waste any step for tuning450

them) to solve this problem. I talked about this with Leif Johnson and he also451

believed that modifying cost function in the middle of training can be useful in452

my case.453

We can also modify cost function to make it less sensible to inner layers of de-454

tector because hits are mostly restricted to center area of these layers so trainer455

has relatively more dataset to train inner areas of inner layers while for higher456

layers, hits have been spread all over the surface of layers. This can also be seen457

by plotting neural net outputs so we can see that on average, we have more458

accurate results for inner layers of detector.459

460

17

Figure 15: Cost function starts from
300 and seems to converge to 56.3; I
have removed first epochs to see that
cost function is almost constant even
when we zoom in

Figure 16: cost function falls down
suddenly while it seemed to be con-
stant; I waited this long only because I
knew that cost function should be a lot
less; it’s possible that these final val-
ues that I report are local minimums,
too but as I’ve waited for some models
for a really long time local minimum
at final point has a small probability

11 More Pixels461

For 10 by 10, 15 by 15, 20 by 20, layers, data size becomes too large because462

dimension of input and output increases so we need hidden layers with more463

neurons and therefore we need more training samples and because of the in-464

crease in input and output dimension, each sample will be larger, too. GPU465

cannot store this amount of data while training anymore.466

If we use simple models, we would need less samples (still 3GB for only 1 mil-467

lion samples) but still training time is too much. To solve this timing issue, we468

can let a simple 5 by 5 model train completely until cost function reaches it’s469

minimum. Then we use this converging function (cost function per epoch for470

example) and fit it to the piece of curve that we have for complicated model to471

predict its final results.472

Still, to achieve accurate enough neural network predictions, we will eventually473

need to use more complicated topologies and therefore more samples. I devel-474

oped a way to save all samples in an external file and for each training epoch,475

I load a random batch from those samples and train on that which solved the476

memory issue.477

Although I didn’t have time to work on fitting method and it can be one of the478

most important next steps of the project.479

480

As I mentioned before, 10 by 10 models showed better performances with similar481

topologies even though they were not trained enough and didn’t have enough482

samples. By looking at figures 17 and 18 you can figure out why. 5 by 5 layers483

don’t have enough resolution and hit points in a relatively large area will be484

18

Figure 17: hits for a detector with 5 by 5 layers and with 4 tracks - hits with
the same color are part of the same track

considered as the same cell which makes it really hard to see track curves and485

trajectories. Another reason for that might be that hit density has decreased486

in 10 by 10 case but still even with the same density I suppose that better487

resolutions will work better and performance is a function of density, resolution488

and also ratio of layer size on distance between layers and we have to find this489

function.490

Low resolution might also lead to a degeneracy in a way that one input can491

have different outputs. I started to look for this degeneracy but it’s really hard492

to find two same inputs to see if their output are same or not as we have a very493

large number of combinations for hits in layers which will lead to a large number494

of different inputs but probably inputs don’t have to be completely the same to495

cause this degeneracy. This problem needs more investigation in details.496

12 Conclusion and Outlook497

After searching for best topologies, algorithms, parameters, etc, we could finally498

train a neural network on this dataset and reconstructed tracks with 1 to 1.5499

mistakes on average while by considering resolution of detector layers, is most500

probably the highest achievable performance.501

To move on to larger models, we needed new methods some of which we have502

developed already.503

We have to find convergence point of a cost function without waiting for full504

convergence.505

19

Figure 18: hits for a detector with 10 by 10 layers and with 4 tracks - hits with
the same color are part of the same track

Work more on initial values for weights.506

Modify cost function or activation functions to make them compatible with this507

dataset.508

Batch-wise loading method and convergence point method will help us to use509

layers with higher resolution which seem to have better performances.510

We have to try more tracks because we need a reasonable hit density for large511

detector layers and also with 4 tracks, each mistake will decrease performance512

too much. I started to use 8 tracks for 10 by 10 models but didn’t have time to513

see the final results514

We have to try different neural network structures like recurrent models and try515

convolutional layers. Eventually, we have to work on more realistic datasets.516

We have to add noises, use random number of tracks, use more realistic track517

trajectories and so on.518

20

