CERN Summer Student Programme 2015 o Project Report ® June - August 2015

Machine learning techniques for razor
triggers

MARINA KoLosova

University of Cyprus
marina.kolosova@cern.ch

Advisor: Jean-Roch Vlimant
jean-roch.vlimant@cern.ch

October 9, 2015

Abstract

During the CERN summer student programme 2015, I had the opportunity to work on a project
related to the development of a neural network for triggering decisions. Following the research of the
Caltech group at the CMS experiment, I developed a neural network which can predict if an event passes
or not a razor trigger. Razor triggers are a part of the HLT menu and are used to distinguish the SUSY
signals from the SM background.

I. INTRODUCTION

Supersymmetry (SUSY) is a hypothetical symmetry that postulates a partner force-carrying
particle (boson) for each particle of matter (fermion) and vice versa. SUSY is one of the most
compelling extensions of the Standard Model (SM) as it gives solutions to a number of yet
unanswered questions, such as the origin of dark matter. Experimental searches for SUSY
particles are focused on events containing energetic hadronic jets and leptons from the decays
of pair-produced heavy particles, such as squarks and gluinos. These events are characterized
by a significant missing transverse energy (Es*) due to the two weakly interacting lightest
superpartners (LSPs) produced in the decay chains.

The razor kinematic variables [1], Mg and R? are used to distinguish the SUSY signal from
the SM background. They are motivated by events with pair production of squarks or gluinos
where each of them decays to the LSP and a number of visible particles. By applying the megajets
algorithm, each event is forced to have a dijet topology. The jets produced in the event are grouped
into two megajets, containing at least one jet. The megajet four-momenta are defined as the sum
of four-momenta of all the jets in each megajet. The jets are arranged in the dijet topology so that
the sum of the invariant masses of the two megajets is minimum. Then, the four-momenta of the
two jets are used to compute the razor variables, Mg and MR defined as:

Mg =\ (177 + | 722 — (b +)2 M)

i = B PE P 7
= 2

mailto:marina.kolosova@cern.ch
mailto: jean-roch.vlimant@cern.ch

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

where 7]’;’ ?]T’ and pl are the momentum of the i jet, its transverse component and its its

longitudinal component, respectively. E* is the magnitude of ?’%liss. The razor variable M&

express the transverse momentum imbalance while Mg express the mass scale of a particle beyond
the SM. The razor dimensionless ratio is defined as:

_ Mf

= i ®)

II. MACHINE LEARNING TECHNIQUES FOR RAZOR TRIGGERS

Razor triggers are a part of the CMS high-level trigger menu. They require events with two or
four particle-flow jets with a minimum transverse momentum of pr > 80 GeV and pr > 40 GeV,
respectively. Moreover, they require events to pass cuts on the razor variables Mg, R? and on the
product (Mg + 300) x (R? + 0.25). With all this in mind, we would like to see if we could use
machine-learning techniques for razor triggers. Therefore, the main purpose of my project is to
build and train a neural network that responds to a razor trigger. The neural network should
predict if a an event passes a razor cut, or not.

My project begins with the generation of synthetic data. The main reason why we use synthetic
data is that we can generate and train the network on as many samples as we want, in contrast to
Monte Carlo data where the number of samples is limited. However, one million samples were
enough for our purpose. The events contain missing transverse energy and jets with a certain
kinematic distribution. For each event, the components of missing transverse energy in x and y
direction are given by a Gaussian distribution with a mean value equal to zero and a variance of

three. The missing transverse energy is given by MET = , /MET2 + ME Tyz. The distributions of
MET,, and MET are shown in plots[I|and [2] respectively.

35000

40000

35000

30000 -

25000

20000

15000 -

Number of Events
Number of Events

10000 +

5000

-20 -5 0
Eﬂl'llr'\\ [Gev] Ellr.\\ va

Figure 1: METy,y distribution Figure 2: MET distribution)

The number of jets per event (plot3) is given by a poisson distribution around six. For each
jet, the mass (plot[d) is given by an exponential distribution with a lambda equal to 0.165 and the
energy-momentum relation:

E? = (pc)2 + (moc?)? 4)

defines the energy of the Jets.

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

500000

180000
160000 800000
700000
£ 19000 | P
@ 120000 - @ e00000
O =
s 100000 S s00000
L 80000 [2 0000
= E
£ so000| 3 300000
= aoooof 200000
20000 | 100000
0 o | i | | |
10 5 2 2 4 W & 70 &
Number of Jets Mass [GeV/c?]
Figure 3: Number of jets per event Figure 4: Mass distribution)

The components of momentum in x and y direction are given by a gaussian distribution with a
mean value of zero and a variance of three while p, has a variance of six.

300000

250000

200000 - 250000

200000
150000 |-
150000

100000 |
100000

Number of Jets
Number of Jets

50000 - 1 50000 1

o
=40 0 10

P [GeV/c] P,|GeV/c]
Figure 5: pyy distribution Figure 6: p, distribution

After the generation of synthetic data, we applied the megajets algorithm in order to have a
dijet topology for each event. The best arrangement of jets into two megajets is considered to
be the one that minimizes the sum of the invariant masses of the two megajets. Then, having
the megajet four momenta (the sum of four-momenta of the jets in each group) and MET, we
calculated the razor kinematic variables, Mg, M% and R. The razor variable R? as a function
of Mg is shown in[/] As a simplified razor cut we require events to pass a cut on the product:
R2Mp > 0.6. The percentage of events passing the cut is ~ 60.8%, which give a Trigger Bit equal
to 1 and the rest ~ 39.2% of events give a Trigger Bit equal to 0.

III. A RazorR NEURAL NETWORK

Computing the razor variables during the HLT requires some time. Neural networks could be
faster for a trigger decision even at L1 trigger and could be implemented by using neuromorphic
hardware.

For the development of the neural netrwork we used theanets package [2], which is a deep
learning and neural network toolkit written in Python [3]. Theanets package supports GPU and is
based on Theano package [4].

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

2.0 : : i :j.f{M"'-’J :

10¢

10°

—
q’
Mumber of Events

10t

: ' 10°
0 10 20 30 40 50 B0

My

Figure 7: Razor variables R* and Mg

Since we want our neural network to predict the trigger bits, we use supervised learning to
train it, which means that we have an input vector and a target for each event. Neural networks
must have a fixed input size, so we set the maximum number of jets equal to 20. The network
receives a vector with the four-momenta of all the jets in the event and the x and y components of
missing transverse energy. Also, it receives the target (trigger bit), 0 for not passing the trigger cut,
and 1 for passing it. The topology of the network is feed-forward (the information moves only
forward, from the input nodes through the hidden nodes and then to the output nodes) with fully
connected layers. The topology of the network is shown in figure 8 For the hidden and output
layers I used the sigmoid activation function:

_ 1
C 14e S

o(S;)

where S; represents the total input of the i’ neuron which is equal to the sum over all individual
inputs multiplied by their weights:

(5)

Sz’ = th]‘w]‘/i (6)
j

We used 80% of the data set as a training set and 20% as a validation set, and tried to train on
different number of samples, different number of hidden layers and neurons per hidden layers.
At the plot[J]you can see how the network behaves as a function of the number of samples and
hidden layers. The y axis is the figure of merit (FOM) which is defined as the number of events
where the output of the neural network agrees with the trigger bit (target), divided by all events:

Number of events where : (TB=1& NN =1)+ (TB=0& NN =0) 7)
All events

The FOM increases with the number of samples but doesn’t change a lot when we increase
the number of layers. However, in order to improve the results, we have to tune all the training

FOM =

CERN Summer Student Programme 2015 e Project Report @ June - August 2015

Jets
Info

[/ Output layer
e e
b 4

2" hidden layer

" with N, hidden neurons

Input layer 1 hidden layer
with 82 neurons

with N, hidden neurons

Figure 8: The topology of the neural network

parameters such as the learning rate, momentum, batch size, number of epochs and iterations,
dropout, etc. You can find details for these parameters at .

o Learning Rate: The learning rate determines how much an updating step influences the
current value of the weights:

w1 = w — yVE(w") 8)
where w are the weights, 7 is the learning rate and E(w") is the error function, which is
defined as:

1Y)
E(w) =5 Y. y(xn,w) — tull ©
n=1

where {x,}, n =1, ..., N are the input vectors and {t,} the target vectors.

A typical value for the learning rate is in the range [0, 1]. A high learning rate makes the
weights and the function that minimizes the error function diverge, which means no learning
at all and a low learning rate makes the network learn very slowly. Learning rate can be
combined with the next training parameter, momentum, to avoid local minima.

¢ Momentum:

W™ = w — yVE(w") + aw® (10)

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

FOM = f(Number of Samples)
800 Hidden Neurons per Hidden Layer

@ 1 Layer

=]
=)
=
*Ere
[l]
i

2 Layers

=1
io
=1
o
L=
L
-

' 3 Layers
4 Layers

#5 Layers

Ll N

@ 6 Layers

®7 Layers

FOM

#® B Layers
®95 Layers

10 Layers

Mumber of Samples

Figure 9: The figure of merit as a function of the number of samples used, for different number of hidden layers when
the number of hidden neurons per hidden layer is equal to 800.

At the plot|10|you can see how the target on the validation data looks like and at the plot
you can see the distribution of the output values of the neural network. Since the results are float
numbers between 0 and 1, we define that an event has passed the razor cut when the output of
the NN is more than the maximum cut (see plot[12), which is most of the times 0.5.

100000 T T T T T - F0000
60000 [
80000 [
n 50000 |
u .
[=% a
E 6oono f £ aoo0o |
(2] [ha]
5 5
& o000} § 300aop
E E
= =3
= 2 20000
20000 +
10000 +
0 I I I I o
-0z 00 02 04 06 08 10 12 -0z 00 02 04 06 08 10 12
Target (Validation Data) NM cutput
Figure 10: Trigger Bits (TB) Figure 11: Neural network output

By trying all the different topologies and tuning the training parameters we managed to get a
~ 91% figure of merit on the validation set. The percentages in each category are shown in table
The categories TB=0 & NN=0 and TB=1 & NN=1 are the events in match and the categories TB=1
& NN=0 and TB=0 & NN=1 are the events in mismatch.

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

Number of events

3500

3000

2500

2000

1500

1000

500

FOM on validation data

095 T T
090
085 ERREEE 4
080
075
070
065

060 |- .

055 L L

. RN
P ‘e

-0.2 0.0 02

0.4
Cut

06

0a

10 12

Figure 12: FOM as a function of different cuts on the output of the NN

Table 1: Results

I TB=0 & NN=0 |
B TB=0 & NN=1 | |
3 TB=1 & NN=0

1a

Figure 13: pr distribution of the jets with the highest

momentum for events in match and in

mismatch

NN
0 1

TB | 0 | 34.23% | 4.93%

1| 435% | 56.49%
— Té:l & II\IN=1 3000

Number of events
=
L
(=]
=]

MET [Ge1]

HEl TB=1 & NN=1
I TB=0 & NN=0 |
I TB=1 & NN=0
[TB=0 & NN=1 |

Figure 14: MET distribution for events in match and

in mismatch

Looking at the events in mismatch (~ 10%) we see that the distribution of transverse momentum

(figure[13) is the same but the distribution in MET (figure [14) is different. The green distribution,
which express the events that don’t pass the razor cut, looks displaced to the let compared to

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

the blue distribution, which express the events that pass the razor cut. The red distribution
corresponds to the events in mismatch where TB = 1 & NN = 0 and behaves like the green
distribution. Similarly, the light blue distribution, ghich corresponds to the events in mismatch
where TB = 0 & NN = 1 behaves like the blue distribution. Therefore, it seems that network gets
confused and predicts the wrong output values. The kinematic razor variable R? as a function of
My is shown in figure|15|for each category. The distributions are as expected since the razor cut is
defined as R2My > 0.6.

Figure 15: R = f(Mg)

After getting 90% FOM on the razor neural network, we wanted to know if we can implement
this on hardware. So, my supervisor and I contacted Sim Bamford from iniLabs in Zurich and
Daniel Neil from the Institute of Neuroinformatics and the answer was positive. We can actually
apply the neural network even on the L1 trigger using Neuromorphic hardware. Neuromorphic
chips are electronic systems that function in a way similar to an actual brain, they are faster than
GPUs or CPUs, but they can only be used with spiking Neural Networks [5] because of their time
notion. Moreover, they can save power due to the fact that they focus their computational effort
on currently active parts of the network. Therefore, we had to convert our neural network to a
spiking neural network.

IV. CONVERTING INTO A SPIKING NEURAL NETWORK

Deep neural networks have been the state of the art for machine learning techiques. The
method used in deep neural networks is simple; there is an input vector which is given at one

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

time and is processed layer-by-layer. The network returns one output value. The disadvantage of
deep neural networks is that they have a large computational cost, in contrast to spiking neural
networks. Spiking Neural Networks (SNN) are more biologically realistic (brain-like) neural
networks. They have a notion of time. The method used is that the inputs are presented as streams
of events. Each spiking neuron of the SNN is composed of three computational stages: first, there
is a sum for all of the neuron’s input current, second, the sum is integrated over time and third,
when the neuron’s membrane potential raises above a potential threshold, a spike is emitted and
the membrane potential resets its value to a certain reset potential.

Converting a deep neural network to a spiking neural network can cause performance loss.
Some of the most important challenges in the conversion of a deep neural network to a SNN is the
representation of negative values and biases. The steps for the conversion, as proposed in [6] are:

e Use rectified linear units (ReLLUs) for all units of the network. A ReL.U unit refers to a unit

that use the activation function max (0, x).

e Don’t use bias during the training

e Train with back-propagation

o After training, map the weights from the ReLU network to a network of integrate-and-fire

units.

o Use weight normalization for near-lossless accuracy and faster convergence.

Equally important is the right balance of spiking thresholds, input weights and input firing rates.
The loss of performance can be caused by low rate, which means that the spiking unit did not
receive sufficient input to cross its threshold, or by high rate, which means that the unit received
too many input spikes or some of the input weights were higher than the neuron threshold.

.1 Integrate-and-fire model

The integrate-and-fire model is one of the simplest models for analyzing the behavior of neural
systems. According to this model, the state of the neuron is characterized by its membrane
potential. The evolution of the membrane potential, vyen, is given by:

Aomen(t) _ Yo N wis(t—s) (11)

dt i s€S;

where w; is the weight of the i incoming synapse, 6(-) is the delta function and S; = {t),¢},...}
contains the spike times of the i’ presynaptic neuron. If the membrane potential raises above the
threshold vy, a spike is generated and the membrane potential is reset to a reset value ¢s.

.2 XOR as a spiking neural network

For a start, we wanted to convert a simple neural network to a SNN. Thus, we chose the XOR
neural network. The input and target values of the XOR problem are shown in table [2} First,
we trained the network using Theanets, with ReLU units, no biases and with back-propagation.
To simulate the spiking neural network we used the Brian [7]] package. Brian is a clock-driven
simulator for spiking neural networks, is easy to learn and use and is written in Python.

The parameters used for the spiking neural network are:

e Voltage threshold, vy, = 950 mV
Reset voltage, v, =0 mV

e Simulation duration = 5 seconds
o Timestep dt (tau,,) =1 second
o Differential equation: f%’ = —v/tauy

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

Table 2: XOR input samples and targets

A B Target
0 0 0
1 0 1
0 1 1
1 1 0

The topology of the spiking neural network is as follows; the input layer is defined as a
group of neurons which generates spikes with Poisson statistics and has two input values. The
hidden and output layers are defined as standard groups of neurons with two and one neurons
respectively. The rate is given by the input values x 6 Hz. The layers are fully connected and
the weights in each neuron are defined as the corresponding weights from the ReLU network
multiplied by 1000 mV.

In order to see the behavior of the spiking neural network, we ran the simulation for four
hundred times. The results are shown in figure For the first sample (0,0), all the layers have
zero spikes since the rate is zero. The spikes of the output layer for the other samples (1,0), (0,1)
and (1,1) have a gaussian distribution.

400

E Sample (0,0)
B Sample (0.1)]]
300 H : mE Sample (1,0] |
B Sample (1,1]]

350 H

250 H

200 H

150 H

Number of Trials

100 H

50 H . “ - : . .
]

o 10 20 30 40 50 B0
Number of Spikes

Figure 16: The output spikes of the XOR spiking neural network, for each sample.

As a SNN output criterion we defined that if the number of spikes in the output layer is more
than 21, then the output of the SNN is equal to 1. If it’s less or equal to 21, the output is 0. With
this "spike" cut on the output layer, we got more than 94% agreement between the target and the
SNN output in all samples. The results for each sample seperately are shown in table

.3 Razor neural network as a spiking network

After the XOR example, we tried to convert the razor neural network to a spiking one. However
we had some difficulties due to the weight normalization and the balancing between the spiking
parameters. Unfortunately due to time constraints we didn’t manage to fully convert the network
to a spiking neural network. The first step was to represent the negative values of the input vector.

10

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

Table 3: Agreement between the target and the SNN output for 400 simulations.

Sample | Target | Agreement
0| 0 0 100%

11 0 1 96%

0] 1 1 94.5%

1] 1 0 95%

What we did was to find the minimum negative value, and then subtract it from all the non-zero
values in the input vector. Moreover, we used L2 regularization for the weights and changed the
activation function from sigmoid to ReLU in all the hidden and output layers. Due to the new
topology of the network, the FOM decreased to 85%, which is still an accepted FOM.

V. CONCLUSION

My project was focused on the development of a neural network which can predict if an
event passes or not a razor trigger. Using synthetic data containing jets and missing transverse
energy we built and trained a razor network by supervised learning. We accomplished a ~ 91%
agreement between the output of the neural network and the target while the other 10% was due
to the noise of the neural network. We could apply such networks during the L1 trigger using
neuromorhic hardware, which are only used with spiking neural networks. Further work would
be necessary to fully convert the razor network into a spiking neural network.

11

CERN Summer Student Programme 2015 o Project Report ® June - August 2015

[1]

(2]
3]

[4]

[5]

[6]

[7]

12

REFERENCES

Christopher Rogan. “Kinematical variables towards new dynamics at the LHC”. In: arXiv
preprint arXiv:1006.2727 (2010).

Leif Johnson. Theanets documentation. URL: http://theanets.readthedocs.org/en/stable/.

Guido Van Rossum et al. “Python Programming Language.” In: USENIX Annual Technical
Conference. Vol. 41. 2007.

Frédéric Bastien et al. Theano: new features and speed improvements. Deep Learning and Unsu-
pervised Feature Learning NIPS 2012 Workshop. 2012.

Wolfgang Maass. “Networks of spiking neurons: the third generation of neural network
models”. In: Neural networks 10.9 (1997), pp. 1659-1671.

Peter U Diehl et al. “Fast-Classifying, High-Accuracy Spiking Deep Networks Through
Weight and Threshold Balancing”. In: ().

Dan FM Goodman and Romain Brette. “The brian simulator”. In: Frontiers in neuroscience 3.2
(2009), p. 192.

http://theanets.readthedocs.org/en/stable/

	Introduction
	Machine Learning techniques for Razor Triggers
	A Razor Neural Network
	Converting into a Spiking Neural Network
	Integrate-and-fire model
	XOR as a spiking neural network
	Razor neural network as a spiking network

	Conclusion

