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Abstract

The Large Hadron Collider (LHC) is the most powerful particle collider in the world, and the Caltech
Compact Muon Solenoid (CMS) group produces tens of petabytes of data in its experiments at the LHC.
As a result, the CMS group has its own infrastructure for data transfers, implementing grid-based data
analysis and global-scale networking. Because the CMS experiment generates voluminous amounts of
data, there needs to be a way to improve the current data management tools to optimize speed of transfers
and facilitate fast I/O access. Machine learning offers numerous methods for such an optimization, as the
field allows us to look at the present state of the network and use information about recorded transfers to
predict features about future data transfers, thereby reducing the number of variables the data management
tool has to consider. Using logged information from PhEDEx, the CMS data transfer system, we created
a large sample matrix of data transfers, partitioned it into testing and training samples, and conducted
Principal Component Analysis, a machine learning method that projects a large multivariate dataset onto
the two variables that most explain variance.

I. Background

The Caltech Compact Muon Solenoid
(CMS) group has been at the forefront of
the Large Hadron Collider (LHC) com-

puting and software efforts aimed at enabling
grid-based data analysis for the last 15 years,
as well as global-scale networking for the last
30 years [8]. Based on the experience with LHC
data taking, central processing, and user analy-
sis, it has become clear that fast data transfers
and distributed file systems that allow fast I/O
access are of crucial importance. Caltech has
made progress towards implementation of both
systems and interfaces between them at Cal-
tech and within the CMS grid infrastructure.
Work is ongoing to bring these systems at a
level of maturity to be used in production at
CMS and elsewhere.

One of CMS’s requirements for sites this
year, was to demonstrate that after their re-
spective 100 Gbps links were upgraded, the
sites would be able to transfer data through
the Wide Area Network (WAN) at rates higher
than 20 Gbps. Caltech was the first site to
achieve that milestone, and was invited to
share its expertise with other sites. Caltech
is currently coordinating the effort among all
US CMS grid sites to scale up various aspects
of the configuration, locally and on the central
services, in order to find the best operating
point for each site.

2015 will be especially important, as the
Large Hadron Collider will resume operation
at higher energy and luminosity, and thus with
extended discovery will reach the spring of
2016, following an extended shutdown during
which the accelerator, the ATLAS (A Toroidal

∗Principal Mentor, Research Scientist
†Project Supervisor, Professor of Physics

1

mailto:nkrishna@caltech.edu
mailto:dkcira@caltech.edu
mailto:smaria@caltech.edu


LHC ApparatuS) and CMS detectors and their
data acquisition systems have been upgraded.
Judging by the data flows across the Atlantic
and Research and Education Networks in 2013
and 2014, the resumption of LHC operations
with the prospect of new discoveries in the
wake of the Higgs boson discovery in 2012.
This will bring a new level of demand and chal-
lenge in terms of worldwide grid computing,
data storage at rates well above 100 petabytes
per year, and data transfers of a few hundred
petabytes during 2015.

The ANSE (Advanced Network Services for
Experiments) project started at Caltech, which
plans its first production deployments starting
in the next quarter, will have a key role in sup-
porting the new level of data operations, and
enabling the LHC experiments to realize their
discovery potential. ANSE’s goal is to integrate
network monitoring and network provisioning
capabilities with the software stacks of the CMS
and ATLAS experiments at the LHC. This is
achieved through enabling more determinis-
tic time to complete a designated set of data
transfers. Furthermore, 2014 has been a time of
rapid evolution in Software Defined Network-
ing (SDN) and the ANSE team has adapted to
and remains at the forefront of these develop-
ments, working on the Floodlight (2013-14) and
subsequently in the OpenDaylight framework.
They are developing intelligent path selection
methods across complex networks supporting
multiple data transfer requests, each of which
is carried out through the use of multipath
Transmission Control Protocol (TCP) and Cal-
tech’s Fast Data Transfer (FDT) application.

II. Introduction

The CMS experiment generates several tens
of petabytes worth of data annually and has
a grid infrastructure with more than 70,000
cores spread globally in the LHC grid. The
Caltech CMS group in particular is construct-
ing an architecture that will facilitate the LHC
experiments’ ability to assign priorities of data
transfers between institutes in the CMS exper-
iment. The architecture guiding the flow of

data is comprised of the OpenDaylight con-
troller, a multi-protocol infrastructure, and a
plugin for the File Transfer Service (FTS) [5].
With these powerful data management tools in
place, the goal is to optimize the completion
time for transferring groups of data (datasets)
between endpoints (grid sites or nodes).

Machine learning is critical to the solution
of this problem, as its methods will allow the
OpenDaylight controller to make intelligent de-
cisions about sending data between nodes. The
field itself involves developing algorithms for
recognizing patterns in large datasets, known
as "training sets," and applying them to make
predictions on future data, known as "testing
sets." This concept is instrumentally applica-
ble to the CMS network infrastructure, as the
present state of the network can be treated
as a training set that will allow the software
to make predictions about future datasets [7].
With this information, the software can learn to
take decisions that will optimize the speed at
which data is transferred across the network.

All of the different data management tools,
described in detail below, record an extensive
logging of analytics about the transfers that
occur between the CMS grid sites. The logged
data holds important information about the
physics datasets, including the number of files
transferred and each of their sizes, the source
and destination of the file transfers, the rate at
which data is transferred, the number of errors
and expired files, etc. The aim of this project
is to implement machine learning methods on
the logged information from PhEDEx, the data
transfer management system for CMS [8].

Machine learning problems can be grouped
into two major categories: supervised learning,
where the data considered has additional fea-
tures that can be predicted by the algorithm,
and unsupervised learning, where training sets
can be analyzed to discover patterns in the data.
We conducted Principal Component Analysis
(PCA), a supervised machine learning method
that projects a multivariate set onto two dimen-
sions. This explains the variance in the data,
visualizes the logged transfers and finds the
correlations between the features to reduce the
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number of random variables the data manage-
ment software has to consider. Furthermore,
after completing PCA, we used Pearson corre-
lation to interpret the results. Ultimately, we
are left with a greater understanding of the
utility of the features about our data transfers,
and these methods can be implemented in the
CMS data management software to further its
efficiency.

III. CMS Data Management and

Transfer Tools

In order for the CMS experiment to be able
to produce many petabytes of data every year,
the infrastructure behind the network must be
strong. The CMS group uses multiple key tools
that comprise this immense infrastructure con-
sisting of numerous grid sites, and a descrip-
tion of each is included below, which shows
how LHC data is collected and transferred and
the use of machine learning.

• PhEDEx (Physics Experiment Data Ex-
port): the Data Transfer Management
System for CMS. It manages the high
level aspects of the transfers starting from
datasets and transfer endpoints, allow-
ing other software to perform the actual
file transfers. PhEDEx is designed to
handle this task with minimum operator
effort, automating the workflows from
large scale distribution of High Energy
Physics (HEP) experiment datasets down
to reliable and scalable transfers of indi-
vidual files. PhEDEx handles virtually all
CMS production data transfers, and we
get the logged data used for our machine
learning analysis from this system.

• FTS: the Grid Data Transfer Service is a
data movement service that aims to reli-
ably copy one Storage URL to another. It
uses a third party copy (e.g. gsipftp) to
achieve this, but will retry if the transfer
fails. It also schedules the copy processes
along network channels to ensure that
the bandwidth is used properly.

• SRM: the storage resource manager, is a
Grid storage service providing interfaces

to storage resources, as well as advanced
functionality such as dynamic space al-
location and file management on shared
storage systems. It calls on transport ser-
vices to bring files into their space trans-
parently and provide effective sharing
of files. At a CMS grid site, SRM will
delegate the file transfer to the GridFTP
servers.

• GridFTP: a high-performance, secure, re-
liable data transfer protocol optimized
for high-bandwidth wide-area networks.
The GridFTP protocol is based on FTP,
the highly-popular Internet file transfer
system.

A schematic representation of the data man-
agement and flow for CMS grid sites is given in
Figure 1. One can see that the transfers are trig-
gered by PhEDEx, which are then processed
by FTS and SRM. Ultimately the transfers are
started as GridFTP processes, running on dedi-
cated GridFTP servers with appropriate com-
puting resources and networking capabilities.

Figure 1: A diagram showing the path of CERN
data transfers through PhEDEx.

IV. Data Transfers and

Extraction

In order to conduct a proper analysis on all of
the logged data collected, it is crucial to know
what kind of data is collected by PhEDEx and
the analytics of transfers themselves. The Cal-
tech CMS group, fueled by the discovery of the
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Higgs-like particle, works on collecting pho-
ton measurements needed to find the Higgs or
other particles that could also decay to photons
[1]. These calculations, taken at the LHC, will
be used to search for and characterize new
particles. As such, a critical component of
the Caltech approach is controlling the flow
of information from the LHC collisions, all of
which is recorded and managed by PhEDEx.
PhEDEx itself records information about the
data transfers, and an example spreadsheet of
such information is provided in Figure 2 [8].

Figure 2: An example of information collected
by PhEDEx about the CMS data transfers.

The first two columns of data represent the
various grid sites that the transfers get sent
to, and while they are relevant to finding a
machine learning based solution, they were
not considered in this paper. Rather, among
the variables above, the features considered for
PCA were the number of files, the total size of
the files in GB, the rate of the file transfers in
MB/s, the number of errors occurred during
the transfer, the number of expired transfers
and the average estimated rate of the transfers
in MB/s before they take place.

Having established the recorded informa-
tion about the data transfers, the data was then
extracted and converted to a useful form. One
of the most important tools needed to conduct
machine learning analysis upon the recorded
data is scikit-learn, a Python module based on
NumPy and SciPy integrating novel machine
learning algorithms for both supervised and
unsupervised learning problems [6]. In order
to conduct these methods on the logged data,

it needs to be converted to an ndarray, a mul-
tidimensional homogeneous matrix native to
NumPy that can be processed by scikit-learn
[6]. To do this, the data was first extracted from
PhEDEx in a JavaScript Object Notation (JSON)
file and converted to a Comma Separated Value
(CSV) file [9]. This was accomplished through
the use of Python scripts, Microsoft Excel and
the CSV python module. Once the CSV file was
obtained, methods contained within NumPy
were used to transform the CSV file into a
readable ndarray. With the ndarray obtained,
the next step of the project became to conduct
PCA.

V. Principal Component Analysis

Principal Component Analysis (PCA) is a ubiq-
uitous tool in the fields of data analysis and ma-
chine learning, and a discussion of the method
as well as an example are provided to contextu-
alize the project. Subsequently, Exact and Ap-
proximate PCA are conducted on the logged
PhEDEx data, and the results are interpreted.

PhEDEx collects information regarding the
transfer of large datasets. In order to find a pat-
tern in the data, we use PCA, which provides
us with a simple, non-parametric mechanism
to extract relevant information. This methods
uses an orthogonal decomposition to convert
these variables into principal components, a
smaller amount of linearly uncorrelated vari-
ables [3]. By doing so, dimensionality reduc-
tion is carried out on the data, and the dataset
can be reduced to two dimensions, allowing
the logged information to be visualized on a
scatter plot, for instance. By performing PCA,
a large multivariable dataset can be projected
onto a plot where the x and y axes represent
the principal components, allowing us to visu-
alize large clusters of data and find patterns in
them [10]. One of the fundamental procedures
to carrying out PCA is the Singular Value De-
composition (SVD), a factorization of a matrix
into a product of matrices. By altering the way
SVD is conducted, we can find out multiple
interesting patterns about the data, leading to
two different types of PCA [3]. Two particu-
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lar types of PCA were carried out, Exact PCA
and Approximate PCA. The former uses linear
dimensionality reduction through SVD of the
data, preserving only the most significant sin-
gular vectors to project the data onto a lower di-
mensional space while the latter uses the same
reduction but where the Singular Value Decom-
position is computed randomly [11]. Figures 3
and 4 show the results after each of the PCA
methods was carried out on the data.

Figure 3: A graph representing Exact PCA car-
ried about on the logged data transfers. Each dot
represents the logged data transformed onto the
prinicipal components, where the x-axis is Principal
Component 1 and the y-axis is Prinicipal Compo-
nent 2.

Figure 4: A graph representing Randomized
PCA carried about on the logged data transfers.
The clustering of data points in corners for both
this and FIgure 3 represent correlations between fea-
tures of our logged data, corroborating subsequent
analysis.

VI. Interpretation and Results

While the scatter plots are visually interesting,
it is necessary to formalize a method for in-
terpreting the results of the PCA plots. The
features considered were number of files, to-
tal file size, rate, number of errors, number
of expired files and average estimated rate of
transfer. A critical tool in being able to inter-
pret the results of these graphs is the Pearson-
product-moment correlation coefficient, simply
a measure of the linear correlation between
two variables. By computing the Pearson cor-
relations between each feature of the logged
dataset and each principal component, we can
figure out which of the variables are most pow-
erfully correlated with which component [2].
We set a benchmark correlation value of 0.5
between the principal components and the fea-
tures of the logged PhEDEx dataset - if the cor-
relation between the feature and the principal
component is at 0.5 or greater, we determine it
to be strong.

Table 1: Measure of Pearson Coefficients

Principal Component

Features PC1 PC2

# Files -0.9887 0.0080
Total File Size (GB/s) -0.9998 -0.0024
Rate (MB/s) -0.9998 -0.0027
# Errors -0.0884 0.1736
# Expired -0.2201 0.9668
Avg. Est. Rate -0.4047 -0.0512

Each number represents the Pearson Coefficient
calculated between the feature and the prinicipal
component. A bolded number indicates that the
Pearson Coefficient between that particular feature
and principal component is significant.

Calculating a Pearson correlation coefficient
between two variables involves taking the co-
variance of the variables and dividing it by
the product of their standard deviations [2].
To compute the Pearson coefficients in Table
1, a vectorized numPy script was written to
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take the ndarray of logged PhEDEx data, get
an ndarray of the principal components using
scikit-learn’s PCA method and return a matrix
of the correlation coefficients as shown in Ta-
ble 1. The first Principal Component (PC1) is
strongly correlated with number of files, total
file size and rate of the data transfer, indicating
that these three features all vary together. Be-
cause these coefficients are negative, this shows
that the first principal component increases as
the number of files, file size and rate decrease.
This corresponds strongly with the scatter plots
of the PCA and the Approximate PCA, explain-
ing the clustering of the data points that occurs
in both.

VII. Discussion

I. Results

By completing a machine learning based anal-
ysis of the logged PhEDEx data, we can deter-
mine that there is a strong correlation between
the number of files, total file size and rate, since
each of their Pearson coefficients is very high.
What this means is that all of these features
explain a substantial amount of the variance in
the transfer data, and they essentially give the
same information on the logged data. When
implementing a machine learning algorithm
into the OpenDaylight controller, there will no
longer be a need to consider all three of these
variables at once; rather, the controller will be
able to optimize transfers through considera-
tion of only a few variables.

II. Future Plans

The next step is to classify the logged data
through the K-means clustering algorithm. In
order to get a better handle on the PhEDEx
data, it is imperative to cluster the unlabeled
data and use the results of the PCA to be able
to predict certain aspects of them.

Another approach currently being pursued
by the CMS group is to create a neural network
between a small number of grid sites in the
CMS group. Our goal is to train a machine

learning algorithm on the grid sites and once
it is sufficiently trained, apply the resulting
algorithm to the OpenDaylight controller.
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