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Abstract1

The Higgs detection with its 126 GeV mass is hinting at physics beyond the standard model.2

We are at the stage where we are unclear as to what discovery story awaits and need to cater3

for an extremely small amount of signals. There have been studies demonstrating the use of4

supervised machine learning techniques in signal detection. However, supervised methods5

have the risks of overtraining on Monte Carlo imperfections as well as the difficulties of6

getting statistical interpretations. In this paper, the Self Organising Map (SOM) was7

applied as an unsupervised data-driven clustering algorithm. To tackle the problem of the8

lack of statistics, the Neural Autoregressive Density Estimator (NADE) was first introduced9

for background estimation in the cells in the SOM. Its ability to detect outliers was also10

investigated in this paper.11

1 Introduction12

The widespread use of TMVA, a ROOT package that gives black-box implementation of a13

wide range of multivariate algorithms, have increased the popularity of machine learning in14

particle physics. The standard approach is to use “shallow” learning techniques (regression15

analysis, shallow neural nets, boosted decision etc) combined with specially engineered16

kinematic variables that are better discriminates for signal vs. background. In recent years,17

rapid developments in Deep Learning have made it possible to construct deep architecture18

for probing complicated non-linear structure in the data. [13]19

In May 2014, ATLAS released the Higgs Boson Machine Learning Challenge on applying20

Machine Learning techniques to Higgs Boson identification against a large amount of back-21

ground noise. The winning solution consists of a deep neural net with dropout trained on22
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random shuffles of the training data. In addition, papers have been published on applying23

Deep Learning Techniques to a wide range of HEP problems including jet identification,24

Higgs benchmark model and SUSY benchmark model. [6] [1]25

All the techniques mentioned above belong to the category of “supervised machine learning”-26

learning an unknown function through examples of labelled data. This requires accurate27

knowledge of both the signal and the background. At the moment, the kind of labelled data28

that we could get hold of are Monte Carlo generated simulated data. Despite the amount29

of studies going into Monte Carlo simulation, we know that it is still not perfect- due to the30

complexity of the simulation of the detector response, different tunings of the parameters31

could lead to different simulated trace. In addition, even if simulation techniques could be32

perfected, to account for all possible signals, we would need to train and test specifically33

for each kind of signal, which is a very time-consuming process.34

Unsupervised machine learning, on the other hand, does not require labelled data, implying35

that training could be applied directly to detector data, saving the learning process from36

Monte Carlo imperfections. Although we would still need to reply on simulated data for37

background estimation, it is much simpler to device correction methods for testing than38

training. In addition, unsupervised methods get rid of the need to train separately on39

different signals- instead we could train on detector data and then do hypothesis tests with40

all the possible signals. The two techniques studied are the Self Organising Map (SOM), an41

unsupervised nonlinear dimensionality reduction algorithm, and the Neural Autoregressive42

Density Estimator (NADE), a density estimator for multidimensional data.43

In section 2, I will briefly introduce Supersymmetry and the Razor Variables; in section 3,44

the methods of data selection will be discussed; section 4 contains a description of the45

statistical tools used to compare the sensitivities; detailed accounts of the unsupervised46

clustering algorithms are given in section 5 and section 6, with results and conclusion in47

section 7 and section 8 respectively.48

2 Background and Previous Work49

2.1 Supersymmetry (SUSY)50

Initially motivated by the hierarchy problem, supersymmetry is a proposed extension to51

the symmetry of spacetime that relates bosons and fermions. It predicts that each boson in52

the standard model (SM) would have a new fermionic superpartner, and vice versa.53

The observed mass of the Higgs Boson, measured by the ATLAS and CMS experiments at54

the Large Hadron Collider (LHC), has prioritized searches for SUSY. According to the SM,55

the Higgs boson is extremely sensitive to quantum corrections. Without new physics to56

offset the effect, the Higgs mass is pushed up to the Planck scale unless there is an almost-57

perfect cancellation due to the fine tuning of certain parameters. SUSY provides such a58
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cancellation mechanism. Moreover, SUSY may explain the existence of dark matter. To59

date, no SUSY signals have been detected at any particle collider but some lower bounds60

on the masses of SUSY particles have been set with the data from the previous two runs61

of the LHC and other colliders. [2] [10].62

Following an energy upgrade to 13 TeV, the LHC will be able to probe a broad range63

of SUSY scenarios during its next run [5]. The CMS detector consists of many sub-64

detectors, composed of various materials to measure the energy and momentum of outgoing65

particles, from which particle tracks can be reconstructed and retraced back to the original66

collisions [11].67

2.2 Razor Variables68

Simplified Models usually assume that only two new SUSY particles are accessible at the
LHC energy scale: a heavy particle such as squark (superpartner of quark) and the lightest
SUSY particle (LSP), the lightest neutralino. The benefit of such models is that they can
be well described by a few parameters related to measurable particle physics observables.
Moreover, the limits defined through simplified models can be used to derive constraints
for more general models. In decay chains proposed by simplified models, one of the final-
state particles - the LSP, is assumed to be weakly-interacting, leading to missing transverse
momentum. The razor kinematic variables [9] MR and MR

T are defined as follows,

MR ≡
√

(| ~pj1+ | ~pj2)2 − (pj1z + pj2z )2

MR
T ≡

√
Emiss

T (pj1T + pj2T )− ~pmiss
T (̇~pj1T + ~pj2T )

2

where ~pji is the four momentum of the ith jet and Emiss
T is the missing transverse en-

ergy. MR is closely related to particle mass whereas MR
T is related to missing transverse

momentum. The razor dimensionless ratio is then defined as:

R ≡
MR

T

MR

The distribution of R2 and MR of the collider data can be compared with the predictions69

given by SM background and SUSY simplified models using statistical methods, providing70

a way to detect SUSY signals. My mentor, Professor Maria Spiropulu, together with her71

students and colleagues, has performed searches with razor variables on 7TeV and 8TeV72

CMS data from the 2011 and 2012 runs, extending the upper bounds on the mass of top73

squack and gluino [3] [4].74
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3 Data Selection75

I used three types of backgrounds (QCD, Z(νν)+jets and TTJets) and one type of signal76

(T1bbbb) in my project to ensure the variety of data but at the same time focusing the77

efforts more on the testing of the machine learning techniques rather than processing78

datasets. Initially W (`ν) + jets dataset was also used for some test. See appendix A79

for the exact set of Monte Carlo data I used.80

The input variables I used were transverse momentum (PT) and eta of the three leading81

jets, two leading muons and two leading electrons, Missing Transverse Energy (metPt82

and sumMET) and the Razor Variables (Mr and r2). Due to the fixed size of the input83

array, some variables were missing: for example, when there was only one electron, all the84

information about the second electron was absent. This could be solved by the creation of85

boxes and conducting a separate analysis in all the boxes. Alternatively, some place-holder86

could be inserted in place of those missing values: one option is to make all of the absent87

values zero or some unrealistic value, e.g. negative value when it is meant to be a positive88

number, which is how the Higgs Machine Learning data were delivered; the second option89

is to use some noisy distribution around an unrealistic value away from all the other data90

points. Both options have their merits and issues and the choice depends on the following91

data process procedures.92

The first stage of selection requires at least two jets with (Pt ¿ 40 GeV, eta ¡ 2.4) and no93

muon with (Pt ¿ 2000 GeV). Here’s a table of different ways I the datasets were processed94

at the second stage:95

Cut Method

Hadronic Selecting all events with no leptons and at least two
jets

R2 0.1 Selecting all events with R2 larger than 0.1
R2 0.05 Selecting all events with R2 larger than 0.05
metPt 65 Selecting all events with metPt larger than 65

96

4 Statistical Test97

To compare the sensitivities of different tools, likelihood test was introduced to set the98

exclusion and discovery limits on signal strength with the same types of signal and back-99

ground. In this hypothesis test, the null hypothesis - background only - is tested against100

the alternative hypothesis - signal with strength µ, assuming that µ has a flat prior from101

0 to ∞. Flat prior implies that L(data | µ) is a constant multiple of L(µ | data) for102

µ > 0.103

Given a set of data binned in a certain way (e.g. on the Mr and R2 plane), the likelihood104
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of the dataset given signal strength µ is:105

L(data | µ) =
∏
bins

P (data | background+ µ× signal) (1)

Assume that the counts in each bin are Poisson distributed around some true value of
b+µs, the test statistic - the log of the ratio of the likelihoods of an alternative hypothesis
and the null hypothesis - is as follows:

λ = log(
L(data | µtest)
L(data | µbest)

) (2)

= log(

∏
bins Poisson(ni | bi + µtestsi)∏
bins Poisson(ni | bi + µbestsi)

) (3)

=
∑
bins

[−(bi + µtestsi) + (ni) log(bi + µtestsi) + (bi + µbest)− ni log(bi + µbest)] (4)

where bi, si are expected background counts and signal counts in bini, ni is the counts106

from data, µbest is the value of µ that maximises L(data | µ), µtest is a test value of107

interest.108

The exact form of the likelihood as a function of µ is unknown but in most situations it109

is well approximated by a Gaussian centred around µbest. [8] Taking into account the flat110

prior, the likelihood can be treated as the probability distribution of µ given the data.111

Therefore the log of the likelihood ratio (λ) gives −σ2/2 where σ is the number of standard112

distributions away from the mean, inverting the formula gives −2λ = σ2. By convention,113

C.L. values are also converted into sigmas with the following formula:114

σ =
√

2erf−1(C.L.) (5)

The common 95% C.L. quoted in particle physics corresponds to a value of σ of
√

2× 1.92.115

As a preliminary comparison of the sensitivities, two toy tests were devised to approximate116

what happens in a search with detector data. Exclusion test: what is the exclusion limit we117

could set on signal strength if there were truly only background (µbest = 0). Discovery test:118

with what significance we can claim the discovery if there were truly signal with strength119

µ (µbest = µ). In both tests, the luminosity was assumed to be 10 fb−1.120

For exclusion test, for simplicity, assume we get exactly the expected counts of background121

(i.e. ni = bi in each bin). µtest = mu since for each value of µ we are testing how many122

sigmas away ni is from bi + µsi. The test statistics is therefore:123

λexc =
∑
bins

[−(bi + µsi) + (bi) log(bi + µsi) + bi − bi log(bi)] (6)

The µ value where −2λexc crosses 2× 1.92 gives the lower limit of µ we can exclude if we124

observed only background.125
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Figure 1: The figure shows the exclusion plot (left) and the discovery plot (right) of data
binned according to nodes in a Self Organising Map trained with data in hadronic box
with cut on R2 at 0.1. Both plots show the respective test statistics as a parabolic (by eye)
function of µ as expected.

For discovery test, again under the simplified assumption that for each value of µ, exactly126

the expected amount of signal is observed (i.e. ni = bi +µsi). µtest = 0 since we are testing127

how many sigmas away the observed is away from expected from background. The test128

statistics is therefore:129

λdis =
∑
bins

[−bi + (bi + µsi) log(bi) + bi + µsi − (bi + µsi) log(bi + µsi)] (7)

A 5σ discovery corresponds to a crossing point of 25.130

5 Clustering with Self Organising Map131

One unsupervised clustering algorithm I used is the Self Organising Map. The Self Organ-132

ising Map (SOM) [7], or Kohonen Map, is a lower dimensional, discretised and non-linear133

grid representation of data. Once trained, data points that are close together in the input134

space would map to neighbouring grid-points on the SOM. In the context of HEP, events135

from the same process should have similar input parameters and therefore projected onto136

some connected region in on the SOM.137

A map is a grid with vectors attached to each node. The vectors correspond to points in the138

input space that the nodes map to. The search method is as follows: train a SOM on actual139

data from the detector and count occupancies at each node; pass Monte Carlo generated140

background samples into the map and count node occupancies; perform a likelihood test141

on the map. See figure 2 for the node occupancies of a trained Self Organising Map.142

The training algorithm for a SOM is as follows:143
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Figure 2: This is a trained SOM with data in the hadronic box and cut on R2 at 0.1. From
left to right, top to bottom, the plots correspond to QCD, ZJets, TTJets and SMS-T1bbbb
respectively. The colour bar goes from blue to red indicating the increase of the number of
hits on the node. We can see from the plots that there is some clear clustering, with SMS
signal near the edge of the map occupying the nodes with few hits from the background
data.

Initialisation randomise the map’s nodes’ vectors144

Sampling select a sample145

Matching use Euclidean distance formula to find the node with the closest vector, or the146

Best Matching Unit (BMU)147

Update update the vectors of the nodes in the neighbourhood of the BMU with a Gaussian148

according to pre-defined learning rate and neighbourhood decay rate.149

Stopping condition once a datapoint has been attached to the same node a certain150

number of times, pass on the update step151

One of my co-mentors, Dr Vlimant, presented the possibility of using Self Organising Map152

to do clustering at a workshop at Simons Foundation. He showed that with equal amount153
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of data, four types of events (QCD, Z(νν)+jets, W (`ν)+jets, T1tttt) form distinguishable154

clusters on 2, 3 and 4 dimensional maps.155

Following this promising results, I changed the number of data points from each type of156

data to be more realistic. This brought about the problem of not having enough Monte157

Carlo samples for the QCD dataset used. Due to its large cross section, QCD was an158

important component of background that could not simply be ignored. I introduced a way159

to do weighted-training by updating the vectors as if the same sample has been passed160

through the map n times where n is the weight. Admittedly this is different from training161

with actual data but before the running speed of the Self Organising Map improved or162

more Monte Carlo data could be generated this is the best way to mimic training with the163

right amount of data.164

Despite rewriting the code using a faster numerical Python library named Theano, the165

running speed of the Self Organising Map training algorithm is not fast enough to handle166

the total amount of data expected. On a CPU (1.8 GHz Intel Core i5), the processing time167

per sample is about 0.0005. With GPU (k40), the performance improves by approximately168

a factor of 2. Without any cuts in the dataset and a luminosity of 10 fb−1 (the total169

amount of data collected at 8TeV was 20 fb−1), the expected amount of data would be at170

least of the order of 109, making the processing time approximately 3 days. Due to the171

amount of tuning required to get a Self Organising Map to deliver satisfactory performance,172

we would expect the process to take a few weeks at least. This means that some cut in173

the data is necessary to reduce the total amount down to some realistic level. I tested the174

performance of Self Organising Map on both unboxed data and hadronic box with R2 0.1175

cut or metPt 65 cut. With weighted training implemented due to the lack of QCD data,176

the total number of training samples was 100000, i.e. training time per epoch 50s on177

CPU.178

On top of making the datasets a reasonable size for the Self Organising Map, pre-scaling179

the datasets to have mean of 0.5 and standard deviation of 1 also helped. This is due to180

the way the node vectors were initialised- the vectors were randomly numbers following a181

uniform distribution between 0 and 1. Another factor I have found to might have influenced182

SOM training is the absolute number of signals. See figure /reffig:lumi. For the unboxed183

datasets, all the missing values were replaced with zero before pre-scaling.184

Once training is complete, test data were passed into the map to obtain expected amount185

of counts from background and signal at each node. One problem encountered was the186

presence of zero nodes- nodes where there are no hits from any type of background, which187

makes hypothesis test problematic. My solution was to combine all the zero nodes with188

the least occupied node as a way of binning.189

Due to the random initialisation of vectors, there is some variation in the discovery limits.190

The values quoted in Section 7 are averages of five independent training with the same191

training dataset. It is also possible to train a Self Organising Map several times on detector192

data to pick the one that has the best performance in setting either discovery or exclusion193
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Figure 3: This shows a plot of exclusion limit on signal strength against luminosity. As
luminosity increases, the exclusion limit gets lower, implying that the SOM is better at
discriminating signals against background as the luminosity increases.

limits with Monte Carlo simulated data. This is similar to varying the binning on the razor194

variable plane and as long as detector data were not used for testing purpose this does not195

violate the ”blind-testing” principle of SUSY group.196

6 The Neural Autoregressive Density Estimator197

The other technique employed is a density estimator named the Neural Autoregressive198

Density Estimator (NADE) [12]. It is applicable to multidimensional data described by a199

joint probability distribution. The basic structure is a deep neural network that resembles200

staged Restricted Boltzmann Machines and connected according to some prior ordering of201

the input variables. For each input sample, the corresponding output generated by NADE202

is an estimated log density. NADE averages the log density of all the training samples to203

obtain estimated average log likelihood for the entire training dataset, which it then uses204

as the cost function for back propagation. To avoid the bias introduced by the ordering,205

the more advanced structure, orderlessNADE generates a large ensembles of NADEs with206

different orderings and train them simultaneously.207

With a NADE trained on the background signals, we can clearly see from figure 4 that the208

signals have log densities much more negative than backgrounds. NADE can also be used209

to generate pseudo data that are meant resemble the true distribution of the training data.210
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At first we thought this could be a solution for lack of QCD data; however as it turned out,211

the pseudo data generated were not good enough approximation to used in the context of212

SOM (see section 6.1).213

Figure 4: This is a plot of signal, background test data and pseudo data. The NADE was
trained on Monte Carlo simulated background data. Test data were drawn from the same
distribution as the training data. Pseudo data were drawn from NADE once it is trained.
We could see that pseudo data roughly follows the same distribution as test data in log
density but displays a fatter tail than test data. Signals were well separately from both test
data and pseudo data, supporting the statement that log density is a good discriminant.

Other than the hyper parameters of neural net training (learning rate, momentum, weight214

decay, shape parameters etc), another factor that has been found to influence NADE215

training is the shape of the distributions input variables. Through trials and errors, it216

became evident the more Gaussian-like the training data are, the better the modelling217

performance. With some datasets, due to the cuts performed at the pre-processing stage,218

there are sharp edges in some of the variables. As an attempt to make the datasets more219

smooth, at least in the individual variables, a set of functions were used to transform each220

variables. See Appendix B for the functions used.221

Initially, to keep all the data together, the missing values were placed as a noisy distribution222

away from the true values. Later on, with the transforms applied, it became problematic as223

to where to put the noisy distribution. For example, eta follows a symmetric distribution224

around zero and putting the noisy at either side would create an artificial bias. Hence it225

was decided that NADE testing would only be done with boxed datasets.226

To test whether the modelling ability of NADE is influenced by the amount of training227

data, i.e. whether NADE can ”extrapolate” into tails of the distribution, the ratio of228
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Figure 5: The mean and error of the log likelihood values were obtained by selecting
different subsets of the remaining 80% of the total data. From the graph it can be seen
that log likelihood does not become more negative as the ratio between test data and
training data increases, implying that the modelling ability of NADE does not vary.

training data to test data was varied to see the change in average log likelihood of dataset229

and the distribution of test data vs pseudo data in log density. The entire dataset of W (`ν)230

+ jets (all data with zeros as noisy distributions and no cuts) was split into 20% training231

data and a fraction of the rest as test data. The plots in figure 5 and figure 6 supports the232

postulate that NADE can cope with lack of statistics and that the modelling ability does233

not decrease as more data are drawn.234

6.1 Background Estimation of SOM with NADE235

For the likelihood test, we will need to know the contribution of all the known process and236

simulated signal in each cluster identified by SOM. Since the signal cluster identified by237

the SOM will most likely be irregular, and the mapping to the SOM is unknown, there238

is no easy analytical way to obtain the amount of background in the box. Having shown239

that modelling ability of NADE does not appear to depend on the amount of training240

data, initially it was hoped that pseudo data generated by NADE could be used in place241

of Monte Carlo data as background estimation.242

To test the agreement between NADE pseudo data and Monte Carlo data in the context243

of Self Organising Map occupancies, a SOM was trained with three types of backgrounds244

with 0.1% signal injection to obtain the expected amount of background count (btrain) at245

each node. Pseudo data of the background 100 times the amount of training data were246

then passed into the train SOM to see node occupancies (bpseudo). Assume that the count247
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Figure 6: Three graphs of the distribution of test data and pseudo data in log density are
shown. From left to right, the training data to test data ratios are 2.50, 0.50 and 0.28
respectively. The three graphs look identical by eye, suggesting that the quality of pseudo
data does not vary.

at each node is Poisson distributed. λ can be approximated by bpseudo due to large amount248

of excess. Various statistics were compared between a toy Poisson distribution thrown249

around the λ values and btrain values. For reference purpose, the same processes were also250

carried out with Monte Carlo background data 20 times the amount of training data. From251

figure 7 it is clear that NADE pseudo data are not a good enough approximation to the252

data it is trained on in the context of Self Organising Map.253

6.2 NADE logdensity254

Even through the log density produced by NADE is merely an approximation of the true255

log density and at the moment we cannot yet put statistical bounds on how good this256

approximation is, we could still use the log density as an indicator to distinguish signals257

from backgrounds.258

It was found that the ordering of the input variables affect testing. Similar to the choice259

of binning, the ordering is also something we could choose by repeated trials until the260

ordering that maximises either exclusion limit or discovery limit is found. In addition, to261

deal with zeros, all the zero bins were combined with the bin with larger (less negative)262

log likelihood until a nonzero bin was created.263

7 Results and Analysis264

The best limits set by SOM, NADE log density and Razor Variables are listed in the tables.265

The sets marked by ”no razor” are those trained without the Razor variables.266

The discovery limits are uniformly larger than exclusion limits as expected. The perfor-267

mance of the Self Organising Map is close to that of the Razor Variables, while NADE log268

density sets much looser limits than both.269
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Figure 7: The top two plots compare a toy Poisson distribution with λ = bMC and btrain;
the bottom two plots compare a toy Poisson distribution with λ = bMC and btrain. Good
agreements between toy Poisson and Monte Carlo can be seen in both cumulative distribu-
tion function and log probability mass function, whereas for NADE pseudo data there are
more data points with cdf near 0 or 1 and large negative log(pmf) values, implying that
mismatch is more than a statistical fluctuation

Data selection SOM NADE Razor

Hadronic, R2 0.1 0.65 ± 0.05 1.792 0.467
Hadronic, R2 0.1, no razor 0.621 ± 0.017 / /
Hadronic, R2 0.05 / 1.376 0.377
Hadronic, metPt 65 0.46 ± 0.13 1.471 0.391
Hadronic, metPt 65, no razor 0.428 ± 0.019 / /
Hadronic, no cuts / 1.376 0.679
All, R2 0.1 0.89 ± 0.04 / 0.675
All, R2 0.05 / / 0.880
All, metPt 65 0.67 ± 0.05 / 0.423
All, no cuts / / 0.455

Table 1: Exclusion limits (−2λexc = 2× 1.92)
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Data selection SOM NADE Razor

Hadronic, R2 0.1 1.67 ± 0.14 4.600 1.203
Hadronic, R2 0.1, no razor 1.61 ± 0.04 / /
Hadronic, R2 0.05 / 3.543 0.969
Hadronic, metPt 65 1.21 ± 0.04 3.784 1.010
Hadronic, metPt 65 1.11 ± 0.05 / /
Hadronic, no cuts / 3.544 1.742
All, R2 0.1 2.27 ± 0.04 / 1.739
All, R2 0.05 / / 2.271
All, metPt 65 1.730 ± 0.012 / 1.092
All, no cuts / / 1.174

Table 2: Discovery limits (−2λdis = 52)

For both the Self Organising Map and Razor, cutting the datasets helped setting tighter270

limits. In terms of the specific cuts used, the Self Organising Map performs best with metPt271

cut at 65 GeV whereas no obvious conclusions can be drawn for NADE and Razor.272

Interestingly, even when the Razor Variables are masked, the Self Organising Map reaches273

similar limits within error. This suggests that Self Organising Map could arrange the itself274

such that it stretches along the a subspace that resembles the Razor plane in terms of275

sensitivity to signals.276

The background estimation for both NADE and SOM are done with Monte Carlo simulated277

data, which have known to be inaccurate. Various methods have been devised to offset this278

difference. In the Razor Variable search, other than data-driven sideband fit, the control279

region method has also been proven to give good background estimation. The control280

region method requires finding two types of events with the same kinematics properties,281

one covering the signal region and the other known to purely background. Monte-Carlo-282

to-data scale factors in the razor plane derived from the control samples are then applied283

to the corresponding signal samples. Fundamentally, each node in the SOM corresponds284

to some irregular region in the input space, so are the bins in NADE log density. If we can285

prove that the two types of events indeed have the same Monte Carlo imperfection in the286

input space, this method can also be applied.287

8 Conclusion and Outlook288

For this particular kind of signal, the best limits set by the Self Organising Map have not289

exceeded razors; however since its clustering ability does not depend directly on the type of290

signal, for signals that do not yet have sensitive hand-engineered kinematic variables, the291

SOM could be applied to achieve similar sensitivity with low-level variables easily obtained292

from detector data. Further more, in the situation where the type of signal searched for is293
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unknown, simply by doing the background estimation on a SOM trained on the detector294

data and testing which type of signal Monte Carlo fill the under-occupied nodes could give295

us some information as to what we should be looking for.296

A multi-dimensional density estimator has great potential in particle physics. Although297

NADE does not given perfect estimation of densities, some systematics errors could be set298

to account for the difference. Despite the fact that NADE log density appears to have high299

discriminating ability (figure 4), in the context of binned likelihood test, the performance300

is not as well as Razor and SOM. More test data might help with likelihood test as the301

tails will be filled, where the signals usually lie. In addition, NADE log density plot has302

the potential to be used as a preliminary survey to hand-pick the anomalies for manual303

inspection to see whether the data point is a detector fault or obvious signal.304
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10 Appendices309

A Data310

The Monte Carlo datasets used were given to me by the Caltech CMS group, stored under311

the following directories on eos file system at CERN:312

313

Dataset Path Cross Section(pb)

QCD eos/cms/store/group/phys susy/razor/run2/Run2RazorNtupleV1.14/MC
/RunIISpring15DR74 50ns /v3/sixie/QCD Pt 170to300 TuneCUETP8M1 13TeV
pythia8/Run2RazorNtuplerV1p14 ToCERN MC 50ns RunIISpring15DR74-
Asympt50ns MCRUN2 74 V9A-v2 v3 v1/150724 042550/0000/

117276

Z(νν)+jets eos/cms/store/group/phys susy/razor/run2/RazorNtupleV1.5/PHYS14 25ns/v7
/sixie/ZJetsToNuNu HT-200to400 Tune4C 13TeV-madgraph-
tauola/razorNtuplerV1p5 PHYS14 25ns v7 v1/150212 174727/0000/

100

W (`ν)+jets eos/cms/store/group/phys susy/razor/run2/RazorNtupleV1.5/PHYS14 25ns/v7/
sixie/WJetsToLNu 13TeV-madgraph-pythia8-tauola/ razorN-
tuplerV1p5 PHYS14 25ns Phys14DR-PU4bx50 PHYS14 25 V1-
v1 v7 v2/150603 201201/0000/

60290*1.0195

TTJets eos/cms/store/group/phys susy/razor/run2/RazorNtupleV1.5/PHYS14 25ns/v7
/sixie/TTJets MSDecaysCKM central Tune4C 13TeV-madgraph-
tauola/razorNtuplerV1p5 PHYS14 25ns v7 v1/150212 174432/0000/

424

SMS-T1bbbb eos/cms/store/group/phys susy/razor/run2/RazorNtupleV1.5/PHYS14 25ns/v7
/sixie/SMS-T1bbbb 2J mGl-1500 mLSP-100 Tune4C 13TeV-madgraph-
tauola/razorNtuplerV1p5 PHYS14 25ns v7 v1/150212 173952/0000/

0.014
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B Transforms315

Here’s a list of transforms I used on the the variables. cutmetpt refers to the cut on metPt316

and cutr2 refers to the cut applied on r2.317

Variable x Function f(x)

jetPt log(x− 39.5)
jetEta arctanh(x/2.4× 0.99)
jetMass x
metPt log(x− (cutmetpt − 0.05))
sumMET log(x+ 1)
MR log(x)
R2 log(x− (cutr2 − 0.0001))

318

C Code319

Here’s the github repository for the codes written for this project. https://github.com/320

Irene-Li/susyML321
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