<u>C. Pena¹</u>, A. Apresyan¹, D. Anderson¹, A. Bornheim¹, J. Duarte¹, A. Ronzhin², M. Spiropulu¹, J. Trevor¹, S. Xie¹.

Precision Timing Calorimetry for High Energy Physics

NSS/MIC 2014 Seattle

Outline

- High Energy Physics motivation for pursuing precision timing in calorimeter
- Physical processes that affect precision timing (TOF resolution)
- Experimental results
 - LYSO-based sampling calorimeter
 - LYSO-Tungsten Shashlik calorimeter
- Summary and future prospects

Cristián Peña

Caltech

Precision Timing Calorimeters

Calorimeter with time resolution of the O(20-30) ps

- Allows a H $\rightarrow\gamma\gamma$ vertex reconstruction with approximately 1 cm resolution
- Reduces pileup (PU) energy by a factor of 5-10

Possible physics applications of timing information

- *Object level*: identify forward PU jets (improve VBF higgs and WW scattering)
- *Single hit level:* e.g timing-base ECAL clustering cleaning
- Spatially separate overlapping vertices that corresponds to different time

Precision Timing Using Crystal

TOF resolution driven by a number of different effects

- Main effects can be approximately factorize
- EM shower development (t_I): shown to be around 20 ps (A. Ronzhin et. al. NIM A, vol 749 p.65-73)

We focus our studies on <u>scintillation</u> and <u>transit time (t_s and t_T)</u>

Setup allows to control:

Photodetector jitter (t_P) at the 10 ps level and DAQ resolution (t_D) to about 6ps

LYSO-based Sampling Calorimeter

LYSO-based Sampling Calorimeter II

Reference MCP-PMT: <u>very fast response (2-3 ns)</u>

LYSO MCP-PMT: <u>fast rising edge; pulse shape consistent with scintillation light</u>

LYSO-based Sampling Calorimeter Analysis

Reference MCP-PMT timestamp (t_0): <u>mean of gaussian fit around peak of pulse shape</u> LYSO MCP-PMT timestamp (t_1): <u>linear fit to rising edge (10-60% of maximum); $t_1 \rightarrow time</u>$ <u>at 20% of the maximum amplitude</u></u>

LYSO-based Sampling Calorimeter Results

Thursday, November 13, 2014

Cristián Peña

Caltech

LYSO-based Sampling Calorimeter Results II

•Observe a $1/\sqrt{E}$ behavior for **TOF** resolution Fit the TOF resolution distribution to the superposition of an stochastic term and a constant term Summary: 20-30 ps TOF resolution goal is achievable for ~50 GeV e/ γ objects; provided enough light collection

LYSO-Tungsten Shashlik Calorimeter

Goal: study the effect of optical transit by increasing the distance traveled by the light *Goal*: measure the TOF resolution using WLS fiber and side readout (a la sampling calorimeter) Build single shashlik module with WLS fibers and MCP-PMT readout

11

Shashlik WLS fibers Readout Results I

Test the response of different WLS fiber, **particularly the rise time**. Measure rise times to be ~10 ns and ~4ns for the Y11 (kuraray) and DBS1 WLS fibers respectively.

In terms of TOF resolution the faster (DBS1) fiber performs better.

Thursday, November 13, 2014

12

Shashlik WLS fibers Readout Results II

Use same TOF algorithm as in the LYSO-sampling calorimeter. Measure a **~4.5% energy resolution** using a single shashlik cell readout by WLS fiber and MCP-PMTs Observe a 1/VE behavior for the **TOF resolution**, measure ~100 ps time resolution for 32 GeV e⁻

Shashlik Side Readout

Alternative timing readout: direct coupling of photodevice to the edges of the shashlik cell. Decreases transit time; Exposing two LYSO tiles

Similar approach as a sampling calorimeter by **direct optical coupling of MCP-PMTs at ~5X**₀. **Reduces transit time jitter** with at the expense of collecting less light. Energy measurement obtained with WLS fibers

Shashlik Side Readout Results

Measure a faster rise time form direct side coupling readout compared to that of the WLS fibers.

Observe a $1/\sqrt{E}$ behavior for the **TOF resolution**, measure ~50 ps time resolution for 32 GeV e⁻

Summary

- Carried out measurement in beam test with standalone LYSObased sampling and LYSO-Tungsten Shashlik calorimeter prototypes.
- * The 20-30 ps TOF resolution goal is achieved using a LYSO-based sampling calorimeter with MCP-PMT and DRS4 read out.
- Study the optical transit time effect on TOF resolution by using different WLS fiber readout and by direct optical coupling to sides of the Shashlik cell.
- Measure ~50/100 ps TOF resolution for a single Shashlik cell using side/WLS(DBS1) read out

BACKUPS

