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Outline
❖ High Energy Physics motivation for pursuing precision 

timing in calorimeter

❖ Physical processes that affect precision timing (TOF 
resolution)

❖ Experimental results

❖ LYSO-based sampling calorimeter

❖ LYSO-Tungsten Shashlik calorimeter

❖ Summary and future prospects
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Physics Motivation for Precision Timing
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High-Luminosity Large Hadron Collider (HL-LHC)

Goals Challenges
Precise measurements of Higgs properties:

• couplings, tensor structure, rare decay
• role in EW-SB (WLWL scattering)

Explore signals of new physics:
• Supersymmetry, DM direct production
• Many analyses require jets and MET

forward'jets,

Collect more data to increase LHC reach:
• Pileup interactions up to 140
• Key measurements will be affected by this 

harsh environment
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Precision Timing Calorimeters
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Calorimeter with time resolution of the O(20-30) ps
• Allows a H→γγ vertex reconstruction with approximately 1 cm resolution
• Reduces pileup (PU) energy by a factor of 5-10

Possible physics applications of timing information
• Object level: identify forward PU jets (improve VBF higgs and WW scattering) 
• Single hit level: e.g timing-base ECAL clustering cleaning
• Spatially separate overlapping vertices that corresponds to different time
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Precision Timing Using Crystal
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TOF resolution driven by a number of different effects
• Main effects can be approximately factorize
• EM shower development (tI): shown to be around 20 ps (A. Ronzhin et. al. NIM A, 

vol 749 p.65-73)

We focus our studies on scintillation and transit time (tS and tT)
Setup allows to control:

Photodetector jitter (tP) at the 10 ps level and DAQ resolution (tD) to about 6ps
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LYSO-based Sampling Calorimeter
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Goal: study the effect of scintillation light by reducing optical transport.
Electromagnetic Shower developed in the lead radiator, then sampled by the LYSO crystal

TOF = t1 - t0  (1)

All measurement carried out at the 
Fermilab Test Beam Facility (FTBF)

DAQ = DRS4 wave 
digitizer + laptop
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LYSO-based Sampling Calorimeter II
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LYSO MCP-PMT

Reference MCP-PMT: very fast response (2-3 ns)
LYSO MCP-PMT: fast rising edge; pulse shape consistent with scintillation light
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LYSO-based Sampling Calorimeter Analysis
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Reference MCP-PMT timestamp (t0): mean of gaussian fit around peak of pulse shape
LYSO MCP-PMT timestamp (t1): linear fit to rising edge (10-60%of maximum); t1→ time 

at 20% of the maximum amplitude

t1t0
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LYSO-based Sampling Calorimeter Results
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• Measure TOF  
resolution for different 
electron energies (4, 8, 
16, 32 GeV)

• Measure 33 ps TOF 
resolution for 32 GeV 
electrons

• TOF resolution: width 
of gaussian fit to the 
TOF distribution (σ)
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LYSO-based Sampling Calorimeter Results II
•Observe a 1/√E behavior for 
TOF  resolution 

• Fit the TOF resolution 
distribution to the 
superposition of an stochastic 
term and a constant term

• Summary: 20-30 ps TOF 
resolution goal is achievable 
for ~50 GeV e/γ objects; 
provided enough light 
collection
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LYSO-Tungsten Shashlik Calorimeter
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Goal: study the effect of optical transit by increasing the distance traveled by the light
Goal: measure the TOF resolution using WLS fiber and side readout (a la sampling calorimeter)

Build single shashlik module with WLS fibers and MCP-PMT readout
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Shashlik WLS fibers Readout Results I
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Photosensor directly on LYSO tile

Shashlik with Y11 fibers

Shashlik with DSB1 fibers

Test the response of different WLS fiber, particularly the rise time.
Measure rise times to be ~10 ns and ~4ns for the Y11 (kuraray) and DBS1 WLS fibers 

respectively.
In terms of TOF resolution the faster (DBS1) fiber performs better.
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Shashlik WLS fibers Readout Results II
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Use same TOF algorithm as in the LYSO-sampling calorimeter.
Measure a ~4.5% energy resolution using a single shashlik cell readout by WLS fiber and MCP-PMTs

Observe a 1/√E behavior for the TOF resolution, measure ~100 ps time resolution for 32 GeV e-

32 GeV e-
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Shashlik Side Readout
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Similar approach as a sampling calorimeter by direct optical coupling of MCP-PMTs at ~5X0.
Reduces transit time jitter with at the expense of collecting less light.

Energy measurement obtained with WLS fibers

Alternative timing readout: 
direct coupling of 

photodevice to the edges of 
the shashlik cell. Decreases 
transit time; Exposing two 

LYSO tiles
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Photosensor directly on LYSO tile

Shashlik with Y11 fibers

Shashlik with DSB1 fibers

Shashlik Side Readout Results

Measure a faster rise time form direct side coupling readout compared to that of the 
WLS fibers.

Observe a 1/√E behavior for the TOF resolution, measure ~50 ps time resolution for 32 GeV e-
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Summary
❖ Carried out measurement in beam test with standalone LYSO-

based sampling and LYSO-Tungsten Shashlik calorimeter 
prototypes.

❖ The 20-30 ps TOF resolution goal is achieved using a LYSO-based 
sampling calorimeter with MCP-PMT and DRS4 read out.

❖ Study the optical transit time effect on TOF resolution by using 
different WLS fiber readout and by direct optical coupling to 
sides of the Shashlik cell.

❖ Measure ~50/100 ps TOF resolution for a single Shashlik cell 
using side/WLS(DBS1) read out
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