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Introduction

I The High-Luminosity Large Hadron Collider (HL-LHC) will collect
approximately 3 ab−1 of data at a higher average primary interaction per
bunch crossing (pileup)

I The HL-LHC program will perform precise measurements of Higgs
properties :
. Higgs coupling, tensor structure, rare decays

I The HL-LHC program will further explore signal for new physics :
. Supersymmetry, dark matter direct production
. Many analyses require jets and MET

I The higher luminosity environment will pose the following challenges

I Pileup interactions will increase
up to 140

I Degradation of physic objects
performance due to PU energy

I Key physics measurements will
be affected by this harsh
environment
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Physics Motivation for Precision Timing
Challenges

Collect more data to increase LHC reach:
• Pileup interactions up to 140
• Key measurements will be affected by this harsh environment

I Mitigation: calorimeter equipped with a time resolution of the
O(20-30 ps) time resolution

Precision Timing Experimental Context

I Test photodetector time resolution
by impinging ∼50 ps light pulse

I Number of photons is very large
I DRS4 readout (electronic noise
∼5 ps)

I MCP-PMT has a vert fast time
response (rise time ∼100 ps) and
low transit time spread (∼ 100 ps)

I MCP-PMT differential time
resolution ∼ 7 ps t (ps)∆
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I Test photodetector time resolution
by impinging ∼50 ps light pulse

I Hamamatsu SiPMs have a fast
time response (rise time ∼1 ns)
and good SPTM (∼ 300 ps)

I Measaure time resolution as
function of photoelectrons

I SiPM time resolution saturates at
∼ 40 ps

(a) Plot of amplitude with
each peak signifying a separate
number of photoelectrons very
clearly.

(b) Plot of the single photoelec-
tron case, fitted to derive time
resolution.

Fig. 11: Analysis sequence for extracting single photoelectron
time resolution (SPTR) with laser at 40% intensity and SiPM
high voltage at 71V; acheived time resolution of ˜288 ps.

(a) Plot of amplitude with
each peak signifying a separate
number of photoelectrons very
clearly.

(b) Plot of the single photoelec-
tron case, fitted to derive time
resolution.

Fig. 12: Analysis sequence for extracting single photoelectron
time resolution (SPTR) with laser at 40% intensity and SiPM
high voltage at 71V with a 15 V amplifier; acheived time
resolution of ˜90 ps.

was ˜90 ps, significantly less than the other measurement.

Figure 13a shows a case where measurements were taken
without the plastic attenuator, which eliminated the single
photoelectron effect we saw in Figure 10. This particular
run was taken at a voltage of 71.5 V and laser intensity of
60%, and reproducibly yielded the best time resolution of all
measurements performed given the laser intensity. The fitted
Gaussian peak with 63 ps time resolution is shown in Figure
13b.

A laser intensity of 100% with the same SiPM voltage
yeided a slightly lower time resolution of 61 ps, as shown in
Figure 14. In this case, with significantly more photoelectrons
(greater laser intensity), we did not acheive a drastically dif-
ferent time resolution. This implies that SiPM time resolution
saturates after a critical number of photoelectrons.

We derived a plot of the time resolution versus the number
of photoelectrons (see Figure 15). We see that time resolution
exponentially decreases as the number of photoelectrons lin-
early increases. Note that the time resolution flattens to about
40 ps as the number of photoelectrons saturates the SiPM.

(a) Plot of amplitude with one
peak with a set laser intensity
(no single photoelectron case
here).

(b) Plot of one peak with a set
laser intensity (no single pho-
toelectron case here), fitted to
extrapolate rise time.

Fig. 13: Analysis sequence for extracting time resolution
for non-single photoelectron laser measurements with laser
intensity at 60% and SiPM high voltage at 71.5V.

(a) Plot of amplitude with one
peak with a set laser intensity
(no single photoelectron case
here).

(b) Plot of one peak with a set
laser intensity (no single pho-
toelectron case here), fitted to
extrapolate rise time.

Fig. 14: Analysis sequence for extracting time resolution
for non-single photoelectron laser measurements with laser at
100% intensity and SiPM high voltage at 71.5V.

Fig. 15: Plot of how time resolution correlated to the number
of photoelectrons

SiPM/DRS4 standalone
with 50 ps laser

Timing Performance of new Hamamatsu Silicon Photomultipliers, NSS-MIC
conference, Seattle 2014. A. Mangu et. al.

Shashlik Calorimeter Techonology

I Each shashlik cell: 26 layer of LYSO and tungsten (absorber)
I Light readout provided by 4 wavelength shifting fibers
I Radiation hard in HL-LHC conditions up to 3 ab−1

I Energy resolution of 10%/
√

E(GeV)⊕ 1%
I Single shashlik cell is tested with different photodetectors to obtain timing

resolution
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• R&D  for HL-LHC on LYSO/W shashlik calorimeter
• Radiation hard in HL-LHC up to 3 ab-1

• Energy resolution of 10%/√E ⊕ 1%
• Energy resolution performance shown in test beam 

on a 4x4 matrix
• Use single shashlik cell to test timing performance 

Beam test results: MCP-PMT readout

I 4-150 GeV electron beam
(Fermilab + CERN)

I 4 DSB1 WLS fibers ( 2.4 ns decay
time)

I Dual readout into Hamamatsu
R3809 MCP-PMT (rise time ∼150
ps and TTS ∼ 25ps)

I Photek 240 MCP-PMT as
reference time detector (rise time
∼115 ps and TTS ∼ 170ps)

I DRS4 based readout (5 GSPS, 700
MHz analog bandwidth)

2x2mm2 trigger
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I Time resolution follows 1/
√
E

dependence
I Time resolution for 150 GeV

electrons is ∼ 70ps
I Ultimate time resolution possible

limited by MCP-PMT response
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New beam test results: SiPM readout

I 20-200 GeV electron beam (CERN)
I 4 DSB1 WLS fibers. Capillaries were also used (results will appear soon).

See presentation by Barry Baumbaugh at this conference.
I Each fiber is read out independently using 4 Hamamatsu SiPMs (1x1, 3x3

mm, 10,000 pixels)
I DSB WLS fibers coupled through optical connector and clear fibers to

SiPM
I Photek 240 MCP-PMT as reference time detector
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I Time resolution obtained by combining the 4 fibers readout
I Preliminary results show an improvement in time resolution wrt. the

results using MCP-PMTs
I Time resolution follows 1/

√
E dependence

I Time resolution for 200 GeV electrons is about 50 ps

σ = 48 ± 2 ps
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Conclusions

I Obtain better than 50 ps time resolution using a single LYSO/tungsten
shashlik cell for 200 GeV electrons

I Preliminary SiPM readout results improves previous time resolution
measurements using MCP-PMTs

I Limiting factors in MCP readout still under investigation

†cristian.pena@caltech.edu 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, CA


