

Studies Towards a Precision Timing Calorimeter for High Energy Dustin Anderson¹, Artur Apresyan¹, Adolf Bornheim¹, Javier Duarte¹, <u>Cristián Peña¹</u>, Maria Spiropulu¹, Anatoly Ronzhin² and Si Xie^{1†}

¹California Institute of Technology and ²Fermi National Accelerator Laboratory

Introduction

- The High-Luminosity Large Hadron Collider (HL-LHC) will collect approximately 3 ab^{-1} of data at a higher average primary interaction per bunch crossing (pileup)
- ► The HL-LHC program will perform precise measurements of Higgs properties :
 - ▶ Higgs coupling, tensor structure, rare decays
- ► The HL-LHC program will further explore signal for new physics :
 - Supersymmetry, dark matter direct production
 - Many analyses require jets and MET
- The higher luminosity environment will pose the following challenges

Pileup interactions will increase

78 pp collision LHC bunch crossing 1 ns interval

Beam test results: MCP-PMT readout

- ► 4-150 GeV electron beam (Fermilab + CERN)
- ► 4 DSB1 WLS fibers (2.4 ns decay time)
- Dual readout into Hamamatsu R3809 MCP-PMT (rise time \sim 150 ps and TTS ~ 25 ps)
- ► Photek 240 MCP-PMT as reference time detector (rise time \sim 115 ps and TTS \sim **170ps**)
- DRS4 based readout (5 GSPS, 700 MHz analog bandwidth)

- up to 140
- Degradation of physic objects performance due to PU energy
- Key physics measurements will be affected by this harsh environment

► Mitigation: calorimeter equipped with a time resolution of the $\mathcal{O}(20-30 \text{ ps})$ time resolution

Precision Timing Experimental Context

- Test photodetector time resolution by impinging \sim 50 ps light pulse
- Number of photons is very large
- DRS4 readout (electronic noise) \sim 5 ps)
- ► MCP-PMT has a vert fast time response (rise time ~ 100 ps) and low transit time spread ($\sim 100 \text{ ps}$)
- ► MCP-PMT differential time resolution \sim **7** ps

(sd)	700	MCP/DRS4 standalone	
I.25	600	with 50 ps laser $\sigma_t = 7.2 \text{ ps}$	
ts / 1	500		
ven			
Φ	400		
	300		
	200		
	100	<u>ا</u>	
	100	110 120 130 140 150 160 170 180 190 200 Δt (ps)	

- Time resolution follows $1/\sqrt{E}$ dependence
- ► Time resolution for 150 GeV electrons is \sim **70ps**
- Ultimate time resolution possible limited by MCP-PMT response

NIM – A, Volume794, 11September2015, Pages7 – 14, doi : 10.1016/j.nima.2015.04.013

New beam test results: SiPM readout

- ► 20-200 GeV electron beam (CERN)
- ▶ 4 DSB1 WLS fibers. Capillaries were also used (results will appear soon). See presentation by Barry Baumbaugh at this conference.
- Each fiber is read out independently using 4 Hamamatsu SiPMs (1x1, 3x3) mm, 10,000 pixels)
- DSB WLS fibers coupled through optical connector and clear fibers to SiPM

NIM - A, doi : 10.1016/j.nima.2015.06.006 **A.Bornheim**, **13 PisaMeeting**, to appear in NIM Proceedings

- Test photodetector time resolution by impinging \sim 50 ps light pulse
- ► Hamamatsu SiPMs have a fast time response (rise time ~ 1 ns) and good SPTM (\sim 300 ps)
- Measaure time resolution as function of photoelectrons
- SiPM time resolution saturates at $\sim 40~\mathrm{ps}$

Time Resolution VS Number of Photoelectrons ජී 40 – SiPM/DRS4 standalone with 50 ps laser ال^ا 1000 Number of Photoelectrons

Timing Performance of new Hamamatsu Silicon Photomultipliers, NSS-MIC conference, Seattle 2014. A. Mangu et. al.

Shashlik Calorimeter Techonology

[†]cristian.pena@caltech.edu

- Each shashlik cell: 26 layer of LYSO and tungsten (absorber)
- Light readout provided by 4 wavelength shifting fibers

Photek 240 MCP-PMT as reference time detector

- Time resolution obtained by combining the 4 fibers readout
- Preliminary results show an improvement in time resolution wrt. the results using MCP-PMTs
- Time resolution follows $1/\sqrt{E}$ dependence
- ► Time resolution for 200 GeV electrons is about **50 ps**

- \blacktriangleright Radiation hard in HL-LHC conditions up to 3 ab^{-1}
- Energy resolution of $10\%/\sqrt{E(GeV)} \oplus 1\%$
- Single shashlik cell is tested with different photodetectors to obtain timing resolution

Conclusions

- Obtain better than **50 ps** time resolution using a single LYSO/tungsten shashlik cell for 200 GeV electrons
- Preliminary SiPM readout results improves previous time resolution measurements using MCP-PMTs
- Limiting factors in MCP readout still under investigation

2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, CA